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CRAPTER I

INTRODUCTION

1.1 General Background

Locomotion can be defined as the process of movement from one

place to another. Throughout recorded history, man has been fascinated

b y the locomotion of various types of animals on land, under water, and

in che air. For example, drawings of various animals found on the walls

of cave dwellings are testimony to the interest that prehistoric civili-

zations had in the locomotion of animals. Locomotion studies were made

around the third century S. C. by Aristotle and his associates [1]. In

latter periods of history, specifically during the eighteenth and nine-

teenth centuries, doctors and scientists both In Europe and America, con-

ducted various studies dealing with different aspects of legged locomo-

tion. Some of the topics of study were: 2) Anatomical studies to deter-

mine the center of gravity of the human body [2-4], 2) Studies of the

types of muscles that came into play during walking [2,5], 3) Photogra-

phic etudies of human and animal gaits [6-8], 4) The kinematics and

dynamics involved in human locomotion [9-12].

U Recently, with the emergence of the field of Bioengineering,

scientists and engineers have begun to take a fresh look at the instru-

U mentation, the diagnostic techniques, and the types of devices used by

the medical profession with a view toward their improvement. One



of the areas in which such inturdisplinary research is being conduc.ted

is the study of legged locomotion systems, Hopefully, the development of

a sound mathematical basis for 'legged locomotion systems which Includes

system dynamics, should lead to better limb coordination control schemes.

[ Computer Simulations of both kinematic and dynamic models of legged

locomotion systems are useful in the design and development of better

and more efficient prosthetic and orthotic devices, as well as in the

design of automatic feedback controllers for legged vehicles.

h r 1.2 Objectives and LimitaLions of the Dissertation

The objectives of this dissertation are obtain answers to some of

the problems concerned with the dynamic stability and limb coordination

control of legged locomotion systems. The techniques of vibrational

Sanalysis are used to obtain stable postural control of legged locomotion

systems. The application of certain stability criteria on thesL systems

is also discussed. Digital computer simulations are used to obtain

Sdynamically stable gaits for idealized models of human and animal

locomotinn.

SThis research has the following limitations:

1) The models investigated consist of a single rigid body

supported by maseless legs.

2) The type of control used in the simulations presented in this

dissertation produces "marching" type of limb coordination,

that is, the model is assumed to move at a constant velocity

on level ground, in the desired direction of motion

r

-A -----[-___
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placing its feet regularly at specified intervals of bot.

time and space.

Other types of control schemes and locomotion systems with leg

mass are aot considered in this dissertation.

1.3 Organization of the Dissertation

ChapLer I provides a brief historical introduction to the general

problem of legged locomotion. The objectives and limitations of the

dissertation are discussed in Section 1.2. in conclusion, a summary of

the contents of each chapter is given.

Chapter II contains a short survey of the extensive literature

that is available on the problem of legged locomotion. Specifically,

this chapter breaks down the general study of legged locomotion systems

Sin terms of: 1) finite state models, 1) kinematic models, 3) dynamic

Srmodels.

IIs Chapter III presents the general equations of motion for an

n-legged locomotion system. Also, the equations of motion of a type of

inverted pendulum system that Is used in this dissertation are derived.

Chapter IV provides the core of the theoretical considerations

describing the method of postural control system mode analysis. After

discussing the theory involved in the mode :interpretation of free motion

of legged locomotion systems, the small angLe equations of motion are

derived for a quadruped. This chapter concludes with a derivation of

thie linearized equations of motion of the inverted pendulum system

discussed in Chapter III.

Chapter V gives a brief insight into the problem of determining the

elgenvalues and eigenvectors of real, non-symmetric, square, general

ii
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matrices. The chapter concludes with a discussion of the application

of these methods for obtaining the eigenvalues and eigenvectors for the

various modal matrices derived in Chapter IV.

Chapter VI is devoted to the problem of stability and control of

the locomotion systems studied in this dissertation. The type of con-

trol used for the n-legged locomotion system, nameiy, model reference

control is described. Then, the necessary and sufficient conditions for

the small motion stability of the quadruped locomotion system are

obtained using the Routh-Hurwitz criterion on the linearized equations

of motion of these systems. Finally, in Section 6.7 the application of

these stability criteria for obtaining stable biped and quadruped gaits

is discussed.

Chapter VII describes the results of computer simulation conduc-

ted during the course of this research. In Section 7.2, the nonlinear

quadruped simulation is verified by the application of vibrational ana-

lysis to the quadruped postural system. Computer output data is presen-

ted tc show correspondence between the nonlinear and linearized system

responses to within one part in 106. Details of the simulation of

quadruped gaics such as the crawl, the walk, and the trot are given in

Section 7,3. Section 7.4 is devoted to the reaults of digital computer

simulation of an inverted pendulum wit: the mass pivoted at a distance

below its center of gravity and supported by a massless leg with a

"fixed" foot. Both the transient response, as well as the results of

the Routh-Hurwitz analysis are presented in this section. Section 7.5

covers the application of the inverted pendulum stability criteria in

the development of the simulation of a stable quadruped pace gait.
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Finally, Section 7.6 discussea a type of biped gait simulated in the

course of this research.

Chapter VIII summarizes the results of this research, and out-

lines topics for further research in the area of legged locomotion

;~ iisystem studies.

4 Finally, a listing of the compOter programs wIth explanations

as well as a list of references is given in the appendices.

U
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CHAPTER II

SURVEY OF PREVIOUS WORK

10 2.1 Introduction

This chapter attempts to give a brief overview of the large

amount of literature that is available in the area of legged locomotion

system studies. The available literature comes from the followingIr areas among others: biomecharncs, kinesiology, prosthetý.cs, orthotics,

etc. Some aspects of the general problem of legged locomotion have

been mentioned in Section 1.1 which gives an idea of the historical

LETr
development of this area of research.

The study of legged locomotion systems is described in terms of

three types of models, 1) finite state models, 2) kinematic models, and

3) dynamic models. Section 2.2 covers the theory of finite state

machines as applied to locomotion systems considering a leg as being in

one of two states, either on the ground (supporting phase) or in the

1 air (swing phase). The kinematic aspects of locomotion are discussedI in Section 2.3, which presents the work being done in the area of time

and motion studies of human and animal gaits. Section 2.4 surveys the

work done in t.. modeling of legged locomotion systems including their

system dynamics.

2.2 Finite State Models

I [ The application of the theory of finite state automata to legged

6
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locomoition systems w,s first suggested by Tomc.vic and Karplus [13,14].

Based on their work, McGhee [15] developed a finite state theory for

legged locomotion. He considered each leg as a sequential machine with

binary output, and defined a number of basic concepts such as gait, gait

matrices, duration vector, duty factor, etc. Using these basic defini-

-Jtions, he classified gaits into regular gaits, symmetric gaits, connected

gaits, etc, and postulated theorems defining their properties. This

I finite state theory was used by McGhee and Frank [16] to develop criteria

for selecting optimum gaits for low speed locomotion of an idealized

quadruped system. They showed that the optimum gait for low speed loco-

motion of an idealized quadruped model corresponds to the crawl, the low

speed gait preferred by most natural quadrupeds.

To test the validity of the finite state theory of legged locomo-

tion, a small artificial quadruped with four identical legs, each with a

powered hip joint, and knee joint was constructed at the University of

Southern California [17]. A small special purpose digital computer was

used for the coo dination of joint motion of this machine, thus proving

:1 that automatic limb coordination control of legged locomotion systems

such as the quadruped could be achieved by simple finite state algori-

thms.

Finite state control of legged locomotion systems implies that

the system is statically stable at all times. Both "synchronous" and

I "asynchronous" types of control were used successfully with this machine

[!814 However. simple finite state control mechanisms for biped locomo-

Stion have not been emonstrated so far.

Recent work in the area of finite state aspects of locomotion
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has dealt with the properties of regularly realizable gait matrices.

Jain [19], has applied the techniques of l 4near programming for determi-

ning the number of regularly realizable nonsingular gaits for bipeds 4nd

quadrupeds. He found that out of the 5040 nonsingular quadruped gaits,

there were a total of 480 regularly realizable nonsingular gaits which

could be reduced to 44 equivalence classes. At least 11 of these 44

equivalence classes of regularly realizable gaits were found to be the

natural gait of some animal from the work of Roberts (201, and Hildebrand

[211.

Legged locomotion systems possess a large number of degrees of

freedom, and are by nature very nonlinear. The development of a finite

state theory for legged locomotion systems was one of the first systema-

Itic approaches to the mathematical analysis of these complex systems.

This study has been a natural extension of the work of earlier investiga-

tors such as, Muybridge, Roberts, Hildebrand, among others who attempted

to classify human and animal locomotion by various methods.

2.3 Kinematic Models

This section reviews work done in 4he area of kinematic studies of

legged locomotion systems. Typically, research in this area involves

the study of human and animal gaits disregarding the forces associated

with these motions.

Motion and time studies of human and animal locomotion have been

"L made by man throughout recorded history. During the 17th century,

Borelli [22], a professor of mathematics in Naples, Italy, determined the

position of the center of gravity in man and in animals, and related it

L to the locomotiun of various species. He drew an analogy between the
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bones and levers, and the muscles and the forces acting on *hese

levers.

S� arey (23] published a series of books between 1873 and 1895.

Htie invented a pneumatic method of registering scientific experiments a

ji~ short d& -ice away from where the event takes place. The device

T- called Marey Tambours, consisted of two lever drums connected by rubber

tubing to the subject. For studying locomotion, these lever drums were

1used for recording the motion of various parts of the human body.

Marey also developed the chronophotagraphic method for recording

Sgait [6]. In this method, successive exposures are made on the same

[Iphotographic plate by means of a rotating mechanism inside the camera.

The subject dressed in light clothing, walks in front of a black back-

ground. Braune and Fischer [24], used a variation of Marey's method to

show only points and lines on the photograph. In their method, called

II •geometric chronophotography, the subject was dressed entirely in black

with brilliant metal buttons or shining bands attached to the clothing

to mark the joints and bone segments.

U Eadward Muybridge [25,26], was the first to analyze animal and

human motion by photographic studies begun in 1872. His work consisted

i of closely spaced sequential photographs of animals and tie undraped

human form in motion. Muybridge's work resulted in two books, one on

animal motion [7], and the other on human locomotion [8]. These books

are considered as classics on the photographic analysis of the gaits

of animals and human beings.

In the twentieth century, a lot of research has been conducted

on various kinematic aspects of locomotion. An excellent chronological
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literature survey of locomotion upto 1949 has been given by Schermerhorn

[271.

S[ Kinematic studies of locomotion have involved such topics, making

podograms (recording of the sequences and duration of weight-bearing on

three points of the bottom of the foot) [28], investigations of the

relationships between length of stride, rate, and speed, and energy

consumption in level walking [29], electro-basographic method of recor-

ding gait [30], studies of normal and abnormal gait patterns [31), etc.

Very recently, engineers and scientists have begun to apply the

Ii advances in technolcgy such as the development of modey-n control theory,

and high speed digital computers to the analysis of the kinematics of

legged locomotion systems.

of Chow and Jacobsen [32], have studied human locomotion by methods

of optimal programming and modern control theory. Using the techniques

[ of optimal control theory, they analyzed biped locomotion as a multi-

point boundary value problem. They were able to simulate curves of hip,

knee, and ankle movements which agreed well with experimental data.

Hartrum [33], has developed a computer simulation of a kinematic

model of human gait. He has used the technique of classifying gaits by

Stheir major determinants first proposed by Saunders, Inman, and Eberhart

[10], and has produced a computer simulation of a stick figure of a man

whose motion is determined by some 80 different kinematic parameters.

[ S~ech simulations are useful in synthesizing gaits to suit experimental

data. Also, they can be used as a computer aided tool to demonstrate both

normal and pathological gaits to doctors and physical therapists.



Burnett and Johnsot [34], have studied the development of gait in

childhood. They used mot "in pictures of 7ait patterns and also studied

the possibility of using (lectrogoniometry as a diagnostic aid in evalua-

ting early abnormalities i:i children.

The research topicE mentioned above should give an indication of

the state-of-the-art of kinematic studies of legged locomotion systems at

the present time.

2.4 Dynamic Models

Many researchers hp:.-e studied the dynamics of legged locomotion

systems from various anglt". Some of the topics of rese-.:ch involved

investigations such as: 1) experiments to determine the center of gravity

of the hutan body [3,35], 2) studies of weight bearing on the foot [36],

3) force-plate method of measuring the pressure that the foot exerts

• against the ground [37], 4, studies of the work done by and the mechani-

cal efficiency of human muscles during walking [38,39], etc.

Many such research cforts were qualitative in nature. Fischer

[40], tried to relate data taken by chronophotography to a three axes

I• coordinate system, and tried to determine the forces lying behind the

o- accelerations and velocities; of the pathways of gait. Using calculus,

he analyzed the moving forces indirectly from pictures by establishing

displacements, velocities, accelerations, and from this, the muscular

efforts involved in walking.

•i Elftman [41-43], published many articles between 1934 and 1951 on

J -i su.±& topics as, the measurement of the external forces in walking, the

Swork doxie 'iy the muscles in walking, experimental studies on the dynamics

Sof human !,:alking, etc. Using the force-plate in conjuncticn

4V

I-
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with motion pictures, and podograph impressions, he tried to get a

total picture of what was happening to the foot during each phase of the

stance. He also used graphical differcatiation as a means fcr the

determination of the external forces acting on the body from its dis-

placements, El ftman also computed the energy transferred and the rate

of work being done by the various components of che locomotion system.

In an article published in 1938, Manter [44], discussed the

dynamics of quadruped walking. He recorded the external forces applied

to the feet of cats as they walked over a special measuring platform,

and determined the components of the acceleration of their center of

Sgravity/ in a three axea coordinate system. Mavter also dis.ssed his

results with those obtained by graphi-al differentiation, and showed

that his method involved fewer approximations.

Gage [11], has discussed the accelerographicr analysis of humai.

gait. He usee strain gage accelerometers mounted on subjecLs at the

level cf the secoxid sacral vertebra to measure both linear and angular

accelerations. Studies were ctnducted on amputees as well as nun-

amputees, and a comparison made between their accelerograms during slow

and -ormal level walking, ramp descent, and stair descent. Gage used

hArmonic analysis to correlate gait defects with abnormalities in the

individual's frequency srectrum.

From the enumeration of the various research activities in the

I "larea of the dynamic analysis of legged locomation systen.s, one can see

that many previous stue,_es were qualitative in nature. Both human and

j animal locomotion is th -'sult of complex processes involving many

factors. However, one can get an idea of the dynamics Involved in the[I
L
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process of legged locomotion by considering simple models for such

systems. According to Bayliss [45], "A standing animal is like a box

balanced on four walking-sticks, each jointed in the middle; to repre-

sent a man, the box is up-ended and balanced on two such jointed sides".

Recently, research efforts have been directed towards the devel-

opme-nt of a sound mathematical basis for the dynamics of legged loco-

Smotion systems [461. Frank and McGhee '47J, have derived the equations

of motion for a four legged locomotion system consisting of a single

rigid body supported by massless legs. This dvnamic model was assumed to

"march` with a constant velocity in the direction of motion, on level

ground,
g n With the advent cf high speed computers, and the newer techniques

of modern control theory, legged locomotion systems can now be simulated

so that their system dynamics can be displayed in real time. The present

Sresearch uses the techniques of vibrational analysis to obtain postural

control for the quadruped locomotion system of Frank and McGhee L4 7 ],

In addition, such modal analysis is used to validate the non-linear equa-

tions of motion describing the system by exposing any mistakes in the

derivation.

Alas, this research effort is directed toward the determination

of stability criteria for quadruped locorvtion systems and a type of

io.verted pendulum system. In addition, irverted pendulum antlys.is is

4 wsed for the stability of both the quadruped and biped systems, and to

simulate certatn dynamically stable quadruped and biped gaits.

1:
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[ ~2.5 Suaimary

This chapter has sketched briefly the developments that have

r taken place in the area of analysis of legged locomotion systems. The

general problem of simulation of legged locomotion systems has been

Soutlined in terms of three specific areas, namely, finite state models,

-•kinematic models, and dynamic models. Sections 2.2 and 2.3 have

presented work -done upto the present time, in the areas of finite state

modeling, and kinematic system modeling of locomotion systems. Section

2.4 his sureyed the vast research efforts in the analysis of the

I dynamic aspects of locovotion systems. In addition, this section has

related the present r,,search effort to the previous work in this area.

This literature survey is by no means an exhaustive enumeration of the

vast amount of literature available in the area of legged locomotion

system studies.

It

--- L,
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CHAPTER III

U EQUATIONS OF MOTION OF LEGGED LOCOMOTION SY,,TEMS

3.1 Introduction

The objective of this zhapter is to describe the dynamics

associated with the motion of legged locomotion systems. In order to

do this, in Section 3.2, the general equations for the translational

and rotational motion of a rigid body are first derived [48). These

basic equations of motion for a rigid body are then applied to an

idealized legged locomotion system consisting of a body of mass P sup-

ported by four massless legs in Section 3.3 [47]. Finally, the theory

SLof a general inverted pendulum system is described in Section 3.4.

The equations of motion of such an inverted pendulum system consisting

of a mass pivoted below its center of gravity [501, will have applica-

tions to the type of biped locomotion system considered in this

dissertation as well as in the stabilization of same faster quadruped

gaits such as the trot and the pace.

3.2 General Equations of Notion of a .Rigid Body

In general, the motion of a rigid body can be described by a

translational equation and a rotational equation. Considering the

general motion of a rigid body, and choosing the center of mass of the

body as the reference point, if the total external force acting on the

body is independent of rotational motion, and if the external moment is

15
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independent of the motion of the center of mass, then the translational

and rotational equations of motion of the body can be solved separately.

Consider a rigid body with a set of body fixed coordinate axes

along the principal axes of the body having its origin at the center of

mass, The general rotational equations of motion of such a rigid body,

also called the Euler's equations of motion, are given by 148]

.iXN + (Iz- Iyy )Wywz (3-1)

', Y yy y + (Ixx- lzz) zwx (3-2)

Hz = 1zzlz + (Iyyk- I')xy (3-3)

where

_MŽ xi + + yz (3-4)

M git o the r boy n3-d a

M is the external moment acting on the rigid body, t is the
L ~absolute angular velocity of the rigid body, and IxX, lYyy and Izz are

I the moments of inertia of the body about the x, y, and z axes respec-

tively.

The general translationa. equations of motion of a rigid body of

mass m are given by 1481

rF = m( + eV - VyW) (3-6)

mFy-(Mmy + vxwz- Vzwx) (3-7)

Fz m( 'Z + Vywk- vXWy) (3-8)

where

F . + J+ F• k (3-9)
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V -v~ + vJ + vzk (3-10)

In the above equations, F is the total external force acting on

2 the rigid body, M is the absolute velocity of tile center of mass of the

body, bcth being expressed interms of their instantaneous body axis

S~components.

Equations (3-1) through (3-5), and (3-6) through (3-10) describe

the rotational and translational motion of a rigid body of mass m having

p a system body fixed coordinate axes with its origin at the center of

mass and oriented along the directions of the principal axes of the

rigid body.

U• 3.3 Equations of Motion of a Quadruped Locomotion System

3.3.1 Basic Equations

11 Tis section discusses the theory dealing with the equations of

"motion for a four legged locomotion system. It is to be noted that the

derivations of equations (3-11) through (3-40), and (3-50) through

%3-60) are from reference [47]. These results are given here for the

sake of completeness because they are used extensively in the lineariza-

tion techniques described in Chapter IV. Also, equation (A-29) of

-. reference [47] is not correct, and the correct version of this result is

given by equations (3-46) through (3-49). The quadruped locomotion

system considered in this section is assumed to consist of a body of

mass m supported by legs of negligible mass.

The following convention has been assumed for the coordinate

axes. The xE coordinate axis is directed toward the desired direction

of travel, the zE coordinate axis is in the direction of gravitational

acceleration (positive donward), and the axis is in the direction

(pstied;.II) n teY
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of the vector cross product

JE x E(3-i)

The equations cf motion are defined with respect to a flat, non-

rotating earth, so that iED •E' k E are regarded as the unit vectors

[ defining an earth fixed frame.

The total state of the locomotion system is described by the

twelve element body state vector

x = (XE, YE' ZE u, v, w, 0, , *9, p, q, r) (3-12)

where

XE zE = position of the center gravity of the

E system relative to an inertial frame iE, JE' kE

u, V, w - components of the translational velocity of
the center of gravity expressed in body
coordinates

L e, 01, -= the body Euler angles

p, q, r - body rotation rates expressed in body coordi-
nates

The body Euler angles are unambiguously defined in the following

L manner. A r-*-ht handed body fixed coordinate system with unit vectors

[" i, J, k is established with its origin fixed at the center of gravity

of the model. This body fixed coordinate system is defined such that

when the body angles e, 0, * are all simultaneously reduced to zero, the

i, j, and k axes are parallel to the iE9 JE" kE axes of the earth fixed

L frame respectively. The x, y, z coordinates are measured relative to

the body fixed coordinate system i, J, k (see Figure 1).

Let the rotation from the earth fixed (XE, YE" ZE) system to the

body fixed system (x, y, z) be accomplished by first rotating about the

kE axis (azimuth), then about the rotated IE axio (elevation), and

I
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finally about the i axis (roll). Then, for any arbitrary point (xat Ya'

Z a) in the earth fixed system, the correspcnding coordinates in the

I body fixed coordinate system arc

h[ " Ti Ya[-E (3-13)

Zb za E

S~where

cosecos* sinicos6 -sine

T , (cos4sinesiný-sin*cost) (cos+cos#+sin*sin)sin*)

(sin4sir-,+cos~sin~cos#) (sin*sinecusO-cos~sin+) cos~cosO
•.-. (3-14) •

For the locomotion system under consideration, if f is the vector

of applied forces expressed in body coordinates

[(f, fy' f )T (3-15)

and T is the vector of applied torques in the same reference frFM~e

SN)T
T - (L, M, M) (3-16)

F and if p, q, r are the components of body rotation rate measured about

[the body fixed x, y, z system of axes, then, the Euler's equations of

motion for this particular system become

i[ Ixx -(ly- Izz)qr + L (1-17)

IyyO . (Izz- Ixx)rP + 'M (3-1s)

(I- )pq + N (3-19)

iL If u, v, v are ,he componeats of body translational velocity in

the x, y, 7 system, then, from equations (3-6) through (3-8), the three

L translational equations of motion for the locomotion system are given by

I
A
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M - (fx - mgsine) + mvr mwq (3-20)

m4 - (fy + mgcos'sinf) + mwp - mur (3-21)

Svm = (fz + -mgcosecoso) + muq - mvp (3-22)

Finally, from equations (3-17) through (3-22), the following

equations of moticn for the locomotion system can be written

Si=vr - wq + fX/m - gsinO (3-23)I - wp - ur + f y/m + gcosOsino (3-24)

Suq - vp + fz/m + gcosecoso (3-25)

( yy- Izz)qr + LI/Ixx (3-26)

S- [(Izz- Ixx)rp + MI/Iy (3-27)

I=(Ix- lyy)pq + NI/I'z (3-28)

l The above equations can be integrated once to get the sixF components of body velocity, but the determination of position requires

that these velocity components be transformed to the earth fixed system.

Therefore [47]

S xE u

YE ' v (3-29)

• T2 q(3-30)

where the transformatio L* T2 is given by [48S
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S0 cosO -sino

T I tanOsino tanOcosj (3-fI

0 secOsino sececoso

Integration of equations (3-29) and (3-30) gives the desired

position components of the body state vector x.

3.3.2 Leg Lengths and Angles

The values of leg lengths and angles and their derivatives are

necessary for the feedback control of the quadruped locomotion system.

They are determined as follows.

Let the position in body coordinates of the foot of leg i, i - 1,

2, 3, 4 be given by the vector (x9 ys zi )T, and let (x, y iE' ziE)T

be the predetermined time-dependent position of foot i in the earth

F fixed system, then

x . [Y E 
(3-32)

SThe other end of the leg is connected to the body at the corres-

ponding hip socket. Let the cooridnates of the hip socket for leg i in

L the body fixed coordinate system be given by

h (ai, bi, c )T (3-33)

L The leg length, and leg hip angles are then obtained by expressing the

Li vector

o d-i yi b (3-34)

Si 
ci
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in a body fixed spherical coordinate system (ki'cz'.i)"

"The length of leg i, Li, is given by

- 2 2 2½3r.

Li [(xi aj) + (Yi4- bi) + (zt - ci) ]

n •Angles a and 8 are defined by

t '(Xj - ai)ia (za - an) (3-36)(zA - ci)

181 -sin-I ( - bi) (3-37)

where ai is the angle which measures the forward swing of leg i about

ji its hip axis, and Si is the angle by which the leg moves out of the

plane iormal to its axis (see Figure 1).

SLeg length and leg angle rates are obtained by differentiating

equations (3-35) through (3-37).

( i = [+i(x -a)+Y(Y -b) + (z -C)] (3-38)

•%Zi - ci) - ii(xi- ai)
a] ai (x, a, a)2 + (zi_ c,)2 (3-39)

Si i(yi - bi) - §izi (3-40)

h V 
£i[(xi - ai)2 + (zi -- Ci)2

The derivatives of foot position X' y., and £i nppearing in the

above equations are obtained by differentiating equation (3-32) as

follows
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""I dTI XiF ;v E
Yi j - YViE Y;L +•! iE YI (3-41)

LI E -ZEj

'F There fore

EK i F'iEIdT• [
•T !•- ETI (3-42)

A: 7 E 1' 1 jiE I.

Lzn zEj L; Li w

Since TI. I [:3, the identity matrix, and x YiE' ZiE are

constants, therefore, " iE , YE and ziE are zero.

Hence

X, X4 Z x utr E
Y.S d 1  E - (3ý-43)

where dT !dt the derivative of matrix T, given in equation (3-14).

For convenience define ma:rix T! as follows

FTlll T112 TI3

T, TI 2 1  T1 2 2  T1 23 (3-41.)

LTI31 71.32 T1 3 3

where Tlij is defined by equation (3-14).

Then the derivative_ of the transformatien matrix TI becomes

ii
I
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I F 41t~os~~fri 12) (-;sirLesilW4T 1 1 1  -ecose -

.d- j(snT 1 +T 31 -, 1 2 2) (si* 1 12+, 1 32+VpT1 2 l (-;in~sinf+;T 1 3 3 )

(3o-45)

Finally, from equations (p3-43) and (3-45), the derivatives of

foot -ositian ki ii are given by

I A

(3-47)

A[(;sin6cos*+0JT'l24 (zXj.z*EF-weinsn*Tj yiyH6c3( z )u

(j-47

a) It i~ assued that each ootisý,2ý plaedonthe ground yEt

~~ sequeft nce; 13 (r3o-u48)'ij~ ~n~ ro t h
star of forar _- tn Ths fo paemns r eel

37,



26

E spaced along the deaired direction of travel and separated

by oaz str'de length for any givcn foot.

t,) The length of each leg meaeured from its hip joint to its

Sfeot is al~toved to vary through knee flexure.

c) i•e force applied by the leg tj the body along a line joiring

[ the root P-nd the hip joint -is assumed to be a linear

combination of leg length and leg lengtIh rate. This means

I-hat each knee joint has a rotatical spring and dauoer.

d) Lateral leg deflect , is assumed to be controlled by a

centering spring and damper.

e) The rearvard rctation of each leg is controlled by applying a

torque at the hip proportional to the difference between the

actual angle measureA from the body axis of the locomotion

system to a line passing chrough the foot and the hip socket

cand the desired angle computed for an ideal constant velocity

gait. Error rate damping is also included in tL computation
S[ of each hip control toxque.

Therefore the simulated locomotion system is controlled by

applying forces along each leg and by moments applied at each hip. it

is assumed that the morznts are applied about the y body axis by a hip

drive motor and about a lateral deflection giuabal axis by a centering

spring and damper.

Considering the body fixed coordinate system. If Tm, is the

torque applied to the body by the hip motor of leg 1, Ts5 is the

centering spring torque applied to the body, and j is the totzl torque

applied to the body by leg i, dhen

SI

p
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FTx Ts cosct

Ti - JTm j (3-50)

LT -Tssinij
L L

The forces applied to the consist of the force along each leg and

the reaction forces normal to each leg which are produced by the applied
moments. These forces are computed in a coordinate frame attached to

each leg. Let z' be a coordinate measured along leg i from its hip

socket. If x' is constrained to be parallel to the x-z plane of the

body fixed system, then

[xii xiail

y T yi- Jbi (3-51)

whe~re the transformation T3 is given by [48]

Scosci 0 -sinai

T3 sin8isinai cosji s.-n~icosai (3-52)

Lcos tsinai -sin~i cos iicoshi

If the reaction force acting on the foot of leg i is denoted bf

fRi, then in leg coordinates

f fi f, (3-53)

can be obtained by noting that all forces and moments acting on any

leg must sun to zero. Then, iotor torque balance requires for each leg

! that

t.
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-T f' f .4cosai (3-54)

and the centering spring torqu~e balance implies that

r Tol i"V- (3-55)

Therefore, if fq is the total force applied by 3e,g i to the body

at hip socket i, expressed I leg coordinates, then

ti /(ticosa;i

; -T " j (3-56)

-- zi -

Finally, the total leg force in body coordinates is given by

f-i ' (f f (3-37)

3.3.4 ToEal Forces and 1[oments Applied to the Body

SThe total force components needed in equations (3-23) through

S(3-25) are obtained by stnmation over all leg forces, Therefore

,- i 4 (3-58)
C- 4LLS-f" fY 3- 5f8)

1=1 iJ_ "

The total moment vector T given by equation (3-16) is composed

L of the mo-ments applied by each hip motor and spring and the moments due

to forces applied at each socket hi. Therefore

a
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T - T + ~~ (3-59)

where

Si k b if zi -Ci y

V :J~Ci A.Y1
h f a, b ci fx -aifz (3-60)

~Iii i!i • ~fx fifz aifYi-bifx,

The equations derived above [47] are used to determine the body

state vector x from its initial value and subsequently applied control

torques and forces.

3.4 Euuations of Motion for an Inverted Pendulum System

A simple biped locomotion system car, be considered to be a mass

with tuo massless legs attached as shown in Figure 2(a). Figure 2(b)

shows the model with the torques applied about the hip and ankle joints

in a longitudinal plane.

S1

(a) (b) (C)

Figure 2 A Simple Biped Locomotion System.

I
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r Figure 2(c) shows a torque applied in a laterat plane to keep the

• •body from falling when the system is being suprorted by one of the le.s.

r [From these figures, one can see that the stabilization of the b1ped

system is similar in some respects to the inverted pendulum problem.

r In analyzing this problem, two methods of approach are possible-

1) the application of Newton's laws of motion, and 2) the Lagrangian

formulation [491. For dynamic systems with certain constrairtts, the

Lagrangian formulation provides an easier method for obtaining their

equations of motion. The inverted pendulum system under consideration

r has a kinematic constraint in that its leg length I is fixed. For

this reason, the equations of motion of chis system, are derived below

Sby the application of Lagrange's equationsý.

in analyzing the motion of a system by the Lagrangian. approach,

the first step is to choose a set of Independent coordinate,, i,

completely characterize the motion of the system without any red• , an-

r The kinetic and potential energies T and V respectively are .hej

Scomputed as functions of the qi's and j-i's.

The Lagrangian function L is given by

L- (T - V) (3-61)

I and the equations of motion of the system are given by the Lagrange's

SI• eq uations

Li dL 3 _L Q, 1,2,3,4,.-., n (3-62)

where the Qi'fs are nonconservative forces applied to the body. These

Qi's are calculated by producing a virttaal dispiaceme;nt of the system

and finding the virtual work done by the forces Qi as given by

r.-
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4W 6q1  (3-63)

The Lagrangian approach is now applied to the following inverted

pendulum syste-a. Figure 3 shows cn inverted pendulum with a maas m

S supported by a les_ leg of fixed length !. The body has a moment

of 4nertia i and its center of gravity is at n distance r above the hip

Joint, 'Me leg is supported by a " fixed " foot, that is, the foot is

Sattached to the Sroucni by a frictionless hinge which permits rotation

of the leg in a plane without arny translation [50]) The analysis of the

inverted pend'--- with ehe m,'ass pivoted at Its center of gra.ity can be

found in referance [51].

y

hihip joint

f' fixed foot "

Figure 3 An Inverted Pendulum System.J Angle3 *1 and 0 are the two independent coordinatec used in the

Legrantlan formulation of the equations of motion for this system. FromU
I
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Figure 3 the total kinetic energy of the system is seen to be

Mil tj ;2I2+~ (3-64)

and

-(£sin0 1 + rsinf2 )i + (£cos 1 4 rcos*2 )j (3-65)

where i, j are the unit vectors of the coordinate system shown in the

figure above.

From equations (3-64) and (3-65), the expression for the kinetic

• enrgy b .....

T m[2 22 + + r 2 2  +1 1;' (3-66)

The potential energy is given by

V = mg(R-J) - mg(lcos* 1 + rcosO2 ) (367)

STherefore the Lagrangian function L is given by

L (T-V) ± 1  o2( ) 2;2]+ *2-mg gcos~ l- grcos •2

i•["(3-68)

"" The virtual work done is given by

6W - M(64p - 60i) (3-69)

and therefore from equations (3-63) and (3-69)

I Q=- M (3-70)

Q - M (3-71)

Solution of the Lagrange's equations (3-62) gives the following

equations of motion in the independent variables *and
L2

!L B
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mz 2- -mr H-~lý n (3-72)

2(l-02)-ntri2skn(ol-02)-mgrsino = + M (3-73)

The above equations of motion can be rewritten in terms of state

variables by using the following definitions. Let

X1  = €1 (3-74)

x2 = (3-75)

x, 4 = 42 2 (3-77)

Substitution of the above equations into equations (3-72) and

(3-73) gives the system equations

S, 3 (3-78)

"k2 x4  (3-79)

! ( - F2 1 (3-80)3 (AD - F2)

LAG - ae

where (AD- 2)

A =mZ2  (3-82)

B mrtr (383

C M (3-84)

D (I + mr ) (3-85)

I E =mgr (3-86)

F Bcos(x 1 - x2 ) (3-87)

G - [Esinx2 - B2 3sin(x1 - x2 ) + H] (3-88)

E [Csinx1 - Bx2sin(x1 - x 2 ) - MI (3-89)

I
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r Equations (3-78) through (3-81) given above provide a state

- -variable representation of the equations of motion of týe inverted

[r pendulum. system with a " fixed " foot.

r 3.5 Stummary

In this chapter, using the Newtonian approach, the equatIons of

I motion of a general quadruped locomotion Dystem consisting of a body of

mass m suppoxted by tassless leg,- have been derived.

Also, the equations of motion for a type of invexted pendulun

[system with a " fixed " foot have been obtained. These basic equations

of motion will be used in the rest of the dissertation to simulate pos-

tural control systems and to derive stable feedback control laws for

12 various quadruped gaits as well as for a certairn type of biped loco-

i ii motion system,

ii
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-d CHAPTER IV

P03TURAL CONTROL SYSTEM MODE ANALYSIS

4.1 Introduction

From the results of the last chapter, the equations of motion of

legged locomotion systems are seen to be nonlinear in nature. These

equations have been programmed into a digital computer simulation which

produces computer generated displays of the idealized locomotion system

1V "performing various gaits.

Now, it is well known in classical mechanics that conservative

dynamic systems can be studied in terms of small vibrations about an

•• Lequilibrium point [48], The equations of motion of these systems cia

linearized, and any free motion of these systems can then be expressed

as a superposition of " normal " modes of vibration. Each " ncrmalI mode of vibration is sinusoidal and is characterized by its frequency.

This concept of modes of free motion can be extended to any linear

time-invariant differential system, even if the system is non-conserva-

tive [52].

One way to obtain a linearization of a nonlinear differential

~~I equation of the form x = f(x). is to replace f(x) with a truncated

Taylor series expension abuut an equilibrium point in which only the

'Ii linear terms are retained. A theorem can be proved [53], which states

that under certain fairly mild conditions on f(x), such a Jacobian

35
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....... ... 4 yialdu valid information regarding the scability and

damping of the small disturbance motion of the nonlinear system.

Rather than proving that the conditions of this theorem are

satisfied, in this dissertation the time domain response of the linear-

Sized syetem equations are compared to a numerical solution of the non-

lir.2ar system differential equations for each vibrational mode. It will

be seen in Chapte Lhat the results obtained by these two methods

I agree to better than one part in 106 thereby validating both the linear-

ization technique and both computer programs.

j In line with the above objective, this chapter first deals with a

description of linear sys.em theory emnphasizing the mode interpretatio.,

of the " free motion " of linear time-invariant systems.

I Then, assuming that the quadruped locomotion system is in equili-

brium in the postural position with its feet vertically below their res-

I pecti-ie hip socket positions, tbe :inearize-d equations of motion are

derived using small angle approximations, both b-, rigorous analysis as

Li well as by an intuitive approach. It is showa that the rigorous

j approach yields a 12 x 3.2 system matrix which decomposes into four

smaller matrices, thus giving four vibrational systems for small displa-

- cements about th. equilibrium position.

Finally, in Section 4.5 the equations of motion of the inverted

pendulum system derived in Chapter III are linearized and the correspon-

ding system matrP7 is obtained. These results are needed io -ompute

stabilizing control constants for the legged locomotion systems j. the

j application of Lhe Routh-Huritz srabil.ty criterion and also to -btain

"lhe eigenvalues and eigenvec.tors o: the system matrices in order to

A
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compute their linear system response.

4.2 Mode Interpretation of the Free Motion of Linear Time-
Jnvariant System

This section outlines brie ly the theory of " free motion " of

a general linear time-inariant system. The results of this section

willbe tid to compute the linearized system response of the legged

locomotion systems discussed in this dissertation. Coasider a general

linear time-invariant system described by the state equation

A_(t) - Ax(t) + bu(t) (4-1)

where

A - n x n constant matrix

b = n x m constant matrix

x(t) - n rowed column ve=tor representing
the state of the system at time t

_x(O) - ini .I state of the system at t = 0

u(t) - inpt_ 1L vector

Considering " free motion " of the system, the input vector u(t)

is zero for all time t. a.:. the syetem stte equation reduces to the

P form

x(t) - AX(t) (4-2)

Consider tie general case in which Xi, i 1. 2 3, ... n are the

Sr. distinc". eigenvalues of the matrix A. Any no!.-zero vector u such

that [55]

Au .iu _u in, (4-3)

F;'

I€
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is called an eigenvector associated with the eigenvalue Xia Since the

eigenvalues of matrix A are assumed to be distinct, their associated

eigenvecturs are linearly independent. Therefore, the free motion x(t)

can be uniquely expressed as a linear combination of these n diszinct

eigenvectors cf matrix A.

nx(t) - Re I a i(t)uRI < t < (4-4)

i'l

r

The general form of a W(t) is given by

a i(t) = C ie Xit (4-5)V- I
where the C,'s are constants.

Therefore

x()- Re ~Cie .it (4-b)

,• AZ t - 0, equation (4-6) yields

~ Ix(0)-1 (4-7)

The constants C i ca-i be found by using the reciprocal basis r

defined by the scalar product

• ~ ~<rEi u> - 1 i j-i . n) (4-8)

I-

where j Kronecker delta I for i jg.j
S0 for i ]

IF
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Taking the scalar product of ri with both sides of equation (4-7)V 
the constant Ci is found to be

-C - <ri, x(O)> (4-9)

Therefore, the " zero input state response of a linear time-

1; invariant system can be expressed as

n Xit

x(t) - Re <.rp X(O)>e S, (4-10)

h •The scalar product <K, .x(O)> represents the magnitude of the

i mode of the system due to the Initial con ditions. If the initial

th th
lconditions are taken along the i eigenvector, then only the i mode

is excited. The scalar products <r , x(O)> where i # j are identi-

"cally zero. Therefore for - linear, time-invariant, unforced system

with distinct elgenvalues the free motion respoase is given by a linear

weighted sum of the modes e Xit.,, where )i is an eigenvalue of the sys-

~II temn iratrix A.

Consider the most general case in which the coefficient matrix

has a complex eigenvalue XI, then A2  complex conjugate of *

is also an eigenvalue. Tbe eigenvectors u and u2 correrpctnding to X,

and X2 are also complex conjugates such that u 2 =!l

X= (ai+J~8) A2 = (ai'Si)

uu+jul u ui-j•' uuI real

2r I+jf 2rr real r4-iel-21
(411
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r

'Then from equation (4-8)

<r u> -1 <rI t> 0 U
- > 0 -r 21 1

<r•, -- t,--'> -1

-[ (4-12)

SThe normalization condition for the complex eigenvectors is given

by

<u- U> + <u"l u"> 1 (4-13)

Using the above results, tWe free motion of a system with k pairs

[ of complex eigenvalues is given by the expression [55]

k
x(t) - eaitQj<rI,x(O)>cosB t + ri",x(O) sin$it]lt +I- -- i=l -

[<r",x(0):-cosO t - ýcr' ,x(O)>sinO t~u!' } (4-14)
i~1 i -ii -i[+

The amplitude and phase of each oscillatory mode depends only on

[ the iritial conditions.

When the initial conditions are equal to ul' that is

x(O) - u' (4-15)

the solution of equation (4-14) gives gives mode 1 as follows

x(t) = eelt [(cosa1 t)ul - (sin$1 t)u'1'] (4-16)

When the initial conditions are equal to u" * then the solution

gives iode 2 given below

[•"x(t) =ea1t [(cos8 t)u" + (sn _~' (4.-17)

IL+



~II

41

The equations derived above give the " zero input state response

of a linear time-invariant system whose coefficeaet matrix has some

distinct complex conjugate eigenvalues and corresponding complex conjugate

eigenvectors.

I In general, the matrix A is real and non-symmetric for the legged

locomotion systems considered in Chapter III. It has both real and com-

"plex eigenvalues which are all distinct. Therefore, the theoretical re-

" sults given in tais section can be used to obtain the linearized system

response to small motions about an equilibrium position of these legged

tI locomotion systems. The linearized equations of motion are derived in

the next section, and these results together with the results of this

section are combined to obtain the various independent vibrational modes

of the quadruped locomotion system.

4.3 Small Angle Equations of Motion for the Quadruped LocomotionSystem

4.3.1 Basic Theory

SIn this section, the equations of motion derived in Chapter III

for the four legged locomotion system are linearized. Using the assump-

tions of small motion of the system about its equilibrium position, all

the equations derived in Chapter III are systematically linearized by re-

placing sines by the respective angles, and the cosines by unity, and

ignoring terms involving products of the state variables. In addition,

symmetry considerations are also used to reduce the system equations

that are obtained.

It is shown that the final 12 x 12 matrix of the linearized system

decomposes into four smaller matrices. These four smailer matrices

r:A
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describe the various independent vibrational modes of the linearized

quadruped locomotion system.

[' The following definitions are used in the rest of this disserta-

tion with reference to the vibrational analysis of the quadruped loco-

motion system:

S- 1) Modal Matrix - The matrix that describes the various transla-

tional and rotational motions corresponding to the indepen-

Ii dent vibrational modes of the linearized locomotion system.

It should be noted that this definition of a modal matrix is

different from that used in linear system analysis, where a

[ modal matrix corresponds to he matrix whose columns are

the eigenvectors of the system matrix. Therefore for the

[ linearized quadruped locomotion system in terms of the above

definition there are four modal matrices.

2) X Axis Vibrational Modes - By definition the x axis vibra-

Ii tional modes correspond to the translational and rotational

motions of the quadruped locomotion system in the y-z plane.

L 3) Y Axis Vibrational Modes - By definition the y axis vibra-

tional modes correspond to the translational and rotational

motions of the quadrtuped postural system in the x-z plane.

4) Z Axis Translational Modes - By definition the z axis tran-

slational modes correspond to the decoupled translationala motion along the z axis of the quadruped postural system.

5) Z Axis Rotational Modes - By definition t z axis rota-

tional modes correspond to the decoupled rotational motion

E1.4 IIM
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about the z axis of the quadruped postural system. This

corresponds to a rotational motion described by the body

Euler angle * in the x-y plane.

The linearized equations of motion ar2 obtained assuming small

motions about the equilibrium position for the various translational and

rotational components of the system state vector. The approach is one

of step by step linearization of all the equations of Chapter III lead-

ing finally to the linearized equations of motion for the quadruped.

-,Considering only small motions of the quadruped system about an

equilibrium point, the following assumptions are made:

The Euler angles e, *, vid * are small, and hence th- sines of

these angles can be replaced by the respective angles, and tieir co-

it sines by unity.

Using symmetry for the hip socket positions, the followLng

results can be obtained (see Figure 4).

a, a 2  a

a a -a
3 '4

b =b =-b
2 4
b2b

r c = C cI ~2 3 4 (4-18)
Also

4 4 4S• ~ai= bi albi 0(4-19)

i1l i~l i-i

P 4and -0 4b 2  (1-20)1 P1i i=!

%v
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I'I
Ez

3
x I

4 E'E 2

(a) Quadruped Standing with its feet directly
below the corresponding hip joints.

31
(-a,-b ,c) (a,-b,c)

c.gs x

(-a,b,c) 2 (a,b,c)

(b) Top View of the Postural System.

Figure 4 The Quadruped Postural System.
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The foot position of leg i in the earth fixed coordinate system

is given by

SX iE a, a
ai

YiE bi = +b

iE 0(4-

The initial position of the center of gravity of the machine in

earth coordinates is given by

SE 0
SYEo

ZEo - -(Lo+ci) ,,-(to+C) (-2
E 14-22)

The position of the center of gravity of the quadruped postural

9L system in earth coordinates is (x , y E 0).

[ From equations (3-14) and (3-31) upon replacing the sines of the

Euler angles by the angles and cosines by unity, the linearized trans-

formation matrices become

"F 1
T, (4-23)

;i0 1%
ST2 1 0 0 (4-24)

Assuming that AzE is the change in position of the z coordinate of

ii!
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i the center cf gra-rity of the body in the earth fixed systemi, equations
ER

(3-29) and (4-231 yield the components of the translational velocity of

Sthe cencer .f gravity.

, U
"1o- V (4-25)

From equations (3-30) and (4-24), the Euler angle rates can be

expressed as

T2 q p (4-26)

Linearizing equations (3-23) through (3-25) gives the components

of the translational acceleration of the center of gravity of the body.

fi [:;z + : g :J (4-27)f /M 0 0 0

Finally, the body rotation rater are given by

L [ L/I xx

jq MI I (4-28)

rJ N/Izzj

Equations (4-25) through (4-28) can be combined to g!,ve the

!I

I
E



4 47

12 x 12 linearized systetz mntrix sho-an below.

X El 000 10 0 000 00 0 x0 0 0 0 0 0 fE E"E 0 0 0 0 i 0 0 0 o oo 0 o xy 0 0 0 0 o fo

So 0 0  0 0 1 0 0 0 0 00  Az E 0 0 0 fK g

o oooO -go0ooo u 0 0 0 0 0 L
ZI 1i 0oooo0 oo0 gooo0 o 0 v 0 0_ 0 0 0 o

m 
1

0 000000000010 w 0 0 ; 0 0 0 N

S0 0 0000 00010 9 0 0 0 0 0 0

0 000000000100 0 p 00 0 0 0 0

0 0 00900000 00001 0 0 0
•'li o o o o o (.,o ~ o P o o -L O.• O i

I 
,.y 

y I
q -- 000300000000 0 r 0 0 0 0 0.1

L L J L izz

(4-29)

The force components f., fy, fz and the torque components L, M,

and N are obtained in ter-- uf the 12 state variables. lihen the 12 x 12

i system. matrix state matrix relating the ffist derivatives of the state

"variables to the state variables is computed.

From equation (3-52) using small angle approximations,

Il -ai

T 0 1 :1 (4-30)
1ai -ai 1

:1

I2
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From equation (3-56) the total force applied by leg, i to the

body at hip socket i expressed in leg coordinates becomes

T AL
•[[Tm/ t

fju -T /t (4-31)

Si.

Then the total leg force is given by (see equation (3-57))

"fx i (T mli A + a ifz i
f Y f T^ f; = (Ts /£t) tfz (4-32)

(T1 1+1

Let the component of the force along the z axis be of the form

-oet = [f. - (g/4)] (4-33)

Srzi

Therefore from equation d (4-32), (4-33) and (3-58), tehe total

force bector components become

I4

f= f = fy = (-Tsi /to) + (mggi/i4)) (4-34)

4

S[ ~~Equation (4-34) can be written in matrix form in termls of all the "

S~components of the various forces and t-rques as given by equatiou (4-15)

S~below.



49

•x n!!ooooooo • : u oý 0 o a1

0 0 . 1 T 01 0O o 1 1•yT -ioot o •.• .-tOoo .~ o z 2 4 2 '. '
YfZ LO 1 0 00 00 LO 0 00 00 0j a31

S• !,•.÷!ooooooOolliiI ooooo ,
LMg) 

1

L1 'S 24a

i 
Ts34 1T

~f3 .14
Afz'

(4-35)

T-.e squmtievs giving leg lengths and angles, namely, equations

(3-35) through (3-37) are now linearized using the conditions given by

-�equations (4-18) through (4-23). Thus

Xj rXiE X -l a,-

L Substituting (z +Az for zE and reakranging terms in (4-36)

i~H1i YO I C! YEi

~ II ziJ Zgj L~~ Le LE -Ji

Hbitg(I)or

l a E F-

Yi bi YE ZE a1(-7
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•I [ Assume

xi . aI + fti

Yi. . b- + Ayi (4-38)
z i , -ZE + Azi

Using equations (4-37) and (4-38) and replacing zE by -(1 0 +c )

-(Io+C), gives the expression

[ - -
Ax -( 0o+c) 0 b 0 6 X

[AYyi f 0 (£Io+C) -aIi - YE (4-39)

Azi ai -b 1  0 ý AZ

Differentiating equation (4-39) with respect to time resuilts in

the expression

[ A -(Zo+c) 0 bi e

IAyiI 0 (£o+c) -ai 4 E (4-40)

Az i L a i -bi1 0

From equation (3-35), the leg lengths Ii are approximately equali[ to
I i a (zi - c ) (4-41)

aThe linearized expression for angle ai is obtained from equations
S~(3-36), (4-39) and (4-41) _

-1 (xi-ai) (xi-ai) Axi
z- a Tan-- lo[,.(o+c)G+bp0-X Ej (4-42)

L

.' 1
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-1(yj-bj) (yj-bj) tAyj
0 (-Sin- ' b) ( i-.j-- j. [_Io-+c)€ + ai"+YlZ1 =sn i ti i to £

(4-43)

The time derivatives of leg lengths and angles are obtained from

equations (4-41) through (4-43).

Si a A; (4-44)

ai , [-(L°+c)O+bi -x( (4-45)

i= [I +c); + a + (4-46)

t. 0 2t 0 1 E

Now the linearized expressions for the components L, M, and N of

the total torque vector T are determined as follows.

IT' Linearizing equation (3-50) by replacing sinai by a, and cosa by

unity results in the expression for T

-i

T1i 0
Substituting for fx1 fi and f from equation (4-32) and for

f' from equation (4-33) in equation (3-60) results in the linearized

expression for Mi given below

LAfzi-(mg/4)]bioa ci(Ti /o) +ciai[Affz-(mg/4)l

I -ai(Tsi /to)-aiSi[ Afi - (mg/4) ]-b i(Tl /Lo)-b CLi[ afzi •

-i0 23
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Substituting for _ from equation (4-47) and for Mi from equa-

tion (4-48) Ln equation (3-60) for z ! I torque vector T results in

the linearized expressions for the total torque vector components L, 1,

and N given below.

L) {[ +l+c i/1o)T s i+bi[A fti-(mp!4) ]+ci16i[Afzi- (MOgM)]

• 4

T = t[l+(c il )]T -a[-Afz -(mg/ 4 )l+clai[Afzi-(mg/4)]}

N (~(-l/l 0)(b T +a T ]-[a 8 +b et ][Af' (g41
ii ii zi

(4-49)

L 4.3.2 Feedback Control Laws

[ •The types of feedback control laws that are used in the control

of the quadruped me leg angles and leg angle rates as a function of

[ time. A simple linear postural control scheme for use with the quadru-

ped would use the following control laws.

1. For vertical control, the vertical force applied by leg i to the

body at hip socket i expressed in leg coordinates is given by

ft C ( -(I + c£i (4-o0)

where C£, and C. are predetermined constants.

For lateral control the torque T. produced by a centering spring-- Tsi

L and damper system is of the form

TS -C(S -a )+ C + Cvy + C.j 4-1.. S 8 i C ~yZ yE

where C8 , C, C , and C. are predetermined constants.
8 y y

Longitudinal control requires a control law giving the hip motor

L
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torque Tm required to maintain control of the machine ii, the Aongi-

tudinal plane. The law used for longitudinal control is given below.

STm C (ai ac ) + C i + C.xE (4-52)

l waere Ca, Co, and C. are predetermined constants and aci is the desired

hip angle for leg i, whenever leg i is in contact with ground.

z[ p4.3.3 Postural System Control L ,wa

For postural control the quadruped Is made to stand on all its

feet with the feet vertically below the respective hip joints. This

condition is equivalent to the following initial values

L £cic
a C, 0(4-53)

tc 1 0

I Using the conditions of equation (4-53), and substituting fcr

ai, i from equations (4-42) and (4-45) in equation (4-52) and usingU the results of equations (4-25) and (4-26), the linearized expression

for the longitudinal torque simplifies to

Ca C"
T {- [-(to+c) •,b4-x ]+ O[-(LO+c)q+b r-u] + C.Ux (4-54)

Ll Using the conditions of equaticn (4-53), and substituting for B!,

and Bi from equations (4-43) and (4-46) in equation (4-51), and simpli-

L fying the expression results in the linearized control law for the

[1 lateral torque T5  given below in equation (4-55).

:IJZ
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T {-. (-(2o+c)a I"y J+ -A4-(Io+c)p+a r+v] + c YE + C.v) (4-55)

FFrom equation (4-50) upon simplifi.cation, the control law for

the vertical force Af' reduces to the expression

Af ffW C [ai 9-bi#-AzE] + C [aiq-bip-w] (4-56)

Equations (4-54) through (4-56) descrtbe the postural system

control laws in terms of the state v*riabl. ' the quadruped system.

L [ 4.3.4 Total Forces and Moments Applied to thc: Body

oT compute the total force compovents fx, fy, fz in terms of

the state variables, substitution of the above expressions fo-t T M

[ Si, and Af into equation (4-34) and simplification by collecting

terms and summing over i 1, .. (.4, using the symmetry properties of

Sequations (4-18) through (4-20) resu.lts in

S4C . ca 4I f
L, [ $- (C + -t S )umI- +4 C.-_) (m• -4(-to+c)C•(qI

o E X-0 "00 ~0 2

1 -(CzA7s C.wJ

obtained in terms of the state variables by substituting tor T,,x Ts ,

I f ) i'N 8  etc, in equation (4-49). After simplifying a•rd coller-fzi

ting terms the following expression is obtained for the total torque

U

--|

.!a ~ %
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I vector T.

[L t -mgc+4(Lgdc) (C +?~,C9j +y[-4(Io+c)2CO4b2Ct.4E(Io+c)]4D

0i 0 0 t

ST H M {m&c-4(lo+c)(Ci[ oc(C.-oC.)Ju+[mgc( 1 o+c__)-4a 2 CC-

2

-- 4(to+c)C Ce-4[a2 C•C•(1o+c) 2 C.Jq1

ii (4-58)

i 4.3.5 State Variable Representation of the Small Angle Equations
of Motion of the Quadruped Locomotion System

The theory of linearizatioza of the quadrurped equations of

motion developed above is now used to obtain a matrix representation

for this system. Upon substituting the expressions for fx, fy' fz

from equation (4-57), and the quantities L, M, N from equat.on (4-58),

IIin the system state equations given by (4-29) and collecting terms, the

system state equations are reduced to a 12 x 12 system matrix relating

IIthe components of the state vector x to their respective first deriva-

tives with ,espect to time. This 12 x 12 system matrix given below in

"-i equation (4-59) decouples into four smallet matrices as indicated by

the dotted lines. These four smaller matrices describe the four Jnde-

pendent vibrational systems cif the quadruped postural system,

*1
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[ -ZE "•'1- o o 0 0 0 0 0 0 00 AzEI

A AB 10 00 00 00 0 00 1w-- - -

0I 0' 0 ~1 0 0 0 0 00 0 0

0 0 C Do 0 0 0 0 0 0 0 r

XE 00000 100 0 000 XE (4-59)
oT~ o 0 0 o I F G H 0 0 0 0 u

So o o 0oto o o 11 o 0 0o e i
0 o 00 •0 J K L110 0 0 q

I~I

0, 0 0 0 0 0 0 0 OIN N P Q v

0o 0 o o o o 01o 1 o o i

L. P 0 0 0 0 0 0 0 o0 sh 2 _ u JLp

[ where

A,, - 4 (4-60)[
B - - (4Ct/M) (4-61)

SC = mg(a 2 +b2 ) _ 4(sZCB+b 2 Ca) (4-62)

0 o zz Izz t

D - -(4/Iz1O)[2 C. + a2CiJ (4-63)

- (g/to) - 24Ca/mlo)j. (4-64)

F = [-(4C./mL2) + (4C,'mL-o)] (4-65"La
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G [(gc/to) - {(t+c)CO/inL2j4-6

R t I 4(jt +c)C./mz2l0 (4-67)

I 1-[41+),j1]+[g/

j a L O~ S, 1/ 02 +Y mg , 40 1) (4-6ý!)

Ji - [4(Z0+c)e(10C~-C&)flPI~yt)) (4-69)

IY y (4-70)

Lz -1[4( 0+c)2 C&IIytoi - [4a2Ci/1y~1) (4-71)

74 - 1[g/10] - [(4(KC8+10 /(mt2)]1 (k4-72)

Iii ~N - -[4(C.+,z C.)/(MZ2)] (-3

II ~ ~P i [4(1o+c)c /(nMt2)] (gC/t0 1(-4

uQ -[4(jt 0+c)C,/(Mjt2)] (4-75)

jj = {f4 10  c) C8+ 0C /( 02)j - ( ragc/ (I cXi10 )1) (4-76)

S -[4(1 0+c)(c.+L0C.)/(I 2) (4-77)

T - [mgc(LO+_c)/(11t0 )]-[.4b C/MI)]..[4(t0 C)2 C 1  (4-..78)

4 2 C.(.U - T U~oc 2  ./( )] + b'Cjl 4-9

jJ -From equations (4~-59) through (4-79), it is seen that the

linear:ze-i equations of motion for the quadrt.ed locomotion system de-

compose Into basically four types of vibrational systems which are

U ~independent of each other. The upper left iland 2 x 2 matrix in equa-.

IA
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tion (4-59), describes the vibrational modes of translation along the

z axis. The other 2 x 2 matrix describes the vibrational system asso-

ciated with rotationa) modes about the z axis. The next matrix in equa-

tion (4-59), which is a 4 x 4 matrix represents the vibrational system

associated with the vibrational modes describing translational motion

along the x axis along with rotational motion described by the Euler

angle e about the y axis. Finally, the lower right hand 4 x 4 matrix in

equation (4-59) represents the vibrational system associated with modes

made up of translational motion along the y axis along with rotational

motion described by the Euler angle + about the x axis.

4.4 Intuitive Approach to the X Axis Vibrational Modes

Assume that initially the quadruped is stand- - on its four legs

with its feet directly below the respective hip joint. The system is

then slightly disturbed from this equilibrium position such that only the

vibrational modes representipg translational motion along the x axis with

rotational motion 9 about the y axis is generated. It is intuitively

assumed that such decoupling of the vibrational modes for the quadruped

postural system exists. This assumption gives rise to the following

conditions:

I) The Euler axgles bec ie

8 - small

.= 0 (4-80)

2) The position of the center of gravity of the body relative

the earth fixed frame has coordinates

I3
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xE a small

Yft0 (4-81)

IIz E -Z

where ZEo intial value of the z coordinate of the zenter

of gravity of the body in the earth fixed frame.

3) The initial position of the center of gravicy of the body it

earth fixed coordinates is

x -o0
Y " 0 (4-82)

ZE -(to+C)

where Zo - initial length of all four legs of the quadruped,

and c - z coordinate of all four hip sockets of the body.

'4) The foot position of leg i, i-il,...4, in earth fixed coordi-

nates is

4xiE a ia

13 YiE - b (4-83)

z -F.0

5) The leg angles have values

Ci m small

"o (4-84)

6) Since the quadruped is assumed to be excited in the particu-

lar vibrational modes under consideration here, the total moment vector

T defined by equation (3-16) becomes

I!



Tm [(0 , ,14-85)

7) The total force vector f (see equation (3-58)), reduces to

4

since the total z axis component of the total force equals

the negative of the weight of the body.

Assuming that sine can be replaced by 0, and cosO equals umity,

and substituting equations (4-85) and (4-86) into che equations of

motion derived in Chapter III, namely, equations (3-23) through (3-28)

the body translational velocity compoaents and the componenta of body

rotational rate measured about the x. y. z axes become

. (fx/r) - go (4-87)

S0 (4-88)

[ ~,a 0 14-89)

- • ,0 (4-90)

QL qyy) (4-91)

S" 0 (4-92)

Using th;. assumptions outlined in equations (4-80) through (4-86)

the equations derived in Chapter III are systematically linearized to

get expressions for f 'nd M, and thus for A and 4 in terms of the state

variables.

Simplification of the transformation matrices TV, T2 and T3 yields

(see equations (3-14), (3-31), and (3-52)]4



1. 0 -0

2 I I"T "1 (4-93)

6 0 1J

0 01

0 1 0 (4-14)S~2

01 0 1lj

0

3i:; i]T3 (4-9 5)

. ~i0 1

The position of the foot of leg i in body coordinates becomes

-I [xi. (xiE-XE) ai-(2 o+c)08xEl

"yz j [(iE-zE)J b j (4-96)

From equation (4-96)

j ~~~(xii [ia] L[XE + (to+c)8]•- • (v-bi) • 0 (4-97)

Z **ie) [aiO + RO J
From equations (4-97) and (3--35), neglecting the term

2 2
X8] as compared to ,Z0+ajB the leg lengths and their time deriva--

tives are given by

J Zi (to + aiO] (4-98)
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rrom equations (3-36), (4-98), and (4-99) linearizatcln results

in the following expression for leg angle ai

Ei " - [xaE +(to0 +0 / [t 0+a ie)} (4-1o0)

[ Using a Taylor's series expression of the form

( XE) 0 a + 0 (4-101)

E 0 =0

0-0

on equation (4-100), the leg angle aj and its time derivative are

T- _C fxE (xE.+c~~e])- C.[+(o+)]+ •(4-102)|

- .24, +(,t +C)8 (4-IL03)
"to E 0

SSubstitution of the expressions for ap, ie, xb ozom the above

equations (4-102), (4-103) and. (4-96), and ii -[YE(IOjc)9] in equa-

4tion (4-52) for the lateral control torque T results in the lineari-

[ zed expression

= -, rx +(tO+c)e] (ý&oLo4 + ýk(41)

From equation (3-56), t~he total force applied by le,& i to the

body at hip socket i is given by

fTLi/i 0 fl] (4-105)

I _
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Also

TIM, T~ IM~ to TIM, 10 mi

Ii t (t-o+ae) to (4106)

The z component of the total force applied by leg i to the body

is assumed to be given by the expression

;ft w [C (ti-lo) + C•it - (mg/4)] (4-107)

1The total leg force vector components in body coordinates ther.

Sbecome (see equations(3-57), (3-58))

4
f Ti./l --m i " z

f =f 0 (4-108)

yL

Li i-I i

SSimplification of equation (4-108) using equations (4-102),

(4-104), (4-107), and the symmetry conditions of equations (4-18)

through (4-20) r6sults in the linearized equation for fI [ 4Ca 4C& 4C [j-L~c 8

(• ) +to+c)g+x I+ x -'21[x (o+c) a]

f = fy 0 0 0

fZ [ -mgLf.
I (4-109)

From equations (3-50), (3-59), and (3-60) the component [ of the

totil torque vector T finally reduces to the expression.-

X • xE+(to+c) el [mgcto-4C•(t+e) I - 4C&(.to+c) [ý+(Lo+c) e1+4CA(t 0+c)F

.-4a 2 (C e + C.e)}
I (4-110N,



From equations (3-29), (3-30), (4-93), and (4-94)

XE M u (4-111)

8 -q (4-112)
I

Application of the expressions for f and M from equations

(4-109) and (4-110) ..n the equations of motion (4-87) and (4-91) results

in the equations expressing ; and i in terms of the state variables.

The translational acceleration along the x axis is given by the

relationship

u = {[(g/to) - (4CV/mt)]xE + [(4/m2o)(CAto-%C)]u + [(gc/to) -

• i 4ca(•u (i c) Imj2o} ]-[ 4C-(to+c)/I(mR •) ]q }

(4-113)

SThe angular acceleration of the body about the y axis becomes

- equal to

,t(l/ t2o)[mgco + 4(YO+c)/(Izyt2)][.toC,-c&Iu

-- e 2]e (4/1 )(a
• ! [ (£o+C) 2•q

(4-114)

From equations (4-111) through (4-114), the linearized sys tem

matrix that describes the x axis vibrational modes for small disturban-

ces of the system from its equilibrium position can be written down.

This matrix is given below.
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'uE 0 1 0 0 XE

u E F G H u

e (4-115)

q I J K L q

In equation (4-115), the quantities E, F, G, ... L, are given by

I expressions from equations (4-64) through (4-71) respectively.

Equation (4-115) describes the linearized system for small mo-

tions associated with the independent vibrational modes of translation

[Ialong the x axis together with rotation 6 about the y axis, that is the

modes associated with motions in the y-z plane. Comparing this modal

U matrix derived intuitively considering that the x axis modes are decoup-

led from the other vibrational systems, with the results obtained by

rigorous analysis (see equation (4-60)), it is seen that the two results

Sare identical. Using a similar intuitive a) •* oach, it is possible to

derive the modgl matrices associated with the tr.nslational and rota+

tional motions with respect to the y axis as well as the z axis. For

dynamical systems whose vibrational modes do not decouple, the lineari-

zed system matrix should be obtained by rigorous analysis.

L • .5 Small Angle Equations of Motion for the Inverted Pendulum System

The equations of motion for the inverted pendulun system derived

in Section 3.4 are now linearized and a state variable representation

- for the small angle equations of motion for this system is obtained.

Consider the following system of state variables

x - (4-116)
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x = (4-117)2 2

x -2 2 (4-118)
3 1 1

x 4 = 2 x (4-119)4 2 2

Substituting these stete variables in the equations of motion of

the inverted pendulum system given by equations (3-72) and (3-73)

results in the following system of equations

mL2 . Ainlr, cos(x -x )-+•trx 2sin(x -x )-mgisinx, - -H (4-120)
Z 4 1 2 4 1-21

(I-Hnr2)x +mHLrx cos(x -x )-mlrx2sin(x -x )-mgrsinx = M (4-121)
4 3 1, 2 'A 1 2 2

Replacing the cosines by unity, and the sines by their angles,

and ignoring terms containing products of the state variables, the

linearized equations for the inverted pendulum system are obtained.

m 2x 3 + mtrx•4 - mgLX1 = -M (4-L.U2)

(+mr 2)xý4 + mx 3 - mgrx 2 - M (4-123)

In equations (4-122), and (4-123), m - mass of the body, r - dis-

[ tance of the pivot below the cetiter of gravity of the body, £ - constant

length of the supporting leg, g - acceleration due to gravity, and M

control torque applied to stabilize the system.

L +-Assume a control torque of the form

1 = K:x 2 + K2x4 + KX+ x3  (4-124)

Substituting equation (4-124) in equations (4-122) iwd (4-123)

and simplifying the resulting expressions, the equations of the

linearized system are obtained in terms of the state variables and the-I:



control constants KI through K ..

3~ + mzrc +(K 3-mg9.)x I+K Ix 2+ K x K 2x 4-O (4-125)

3 3 2 3 2

mirk3+ (I14mr2 )4 - K XI - (KI+mgr)x2 - K x -xK2xx 4 0 (4-126)

The above equations can be further simplified by using the fol-

lowing substitutions.

Let

A, m12 (4-127)

A2 = (I + mr2 ) (4-128)

A = m'nr (4-129)
3

13 A (K - mgI) (4-130)

A5 W (KI + mgr) (4-131)

Then, cquations (4-125) and (4-126) can be expressed in the form

Al x 3 + A3•k + A4 XI + Kix 2 + K4 x 3 + K2 X4 I 0 (4-132)

A3x 3 + A2 x 4 - K3 x1 - A5 X2 - K4 x 3 - K2 x 4  0 (4-133)

ýiolving these equations simultaneously for x and x4 , the A'near-

E ized system state equations become

- x (4-134)

A2 X4 (4-135)

U3 =- [ (A2 A4 +A3K3)xl'.+(A2K1+A3As)x 2+(A2+A3)K4x 3+(A2+A3)K2x•4

[AA -A]
~11 2 3
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[(A^ K3+A3 A4 )xl+(A1 A5 +A K1 )x4+(Al +A3 )K.,x 3+(A 1+A3 )K2 x4I
411 [A 0 (4-137)

Equations (4-134) through (4-137) are the linear3.zed system state

equations for the inverted pendulum system with a " fixed " foot, and a

massless leg Oth the mass pivoted below its center tf gravity.

FEquations (4-134) through (4-137) can be put irn toe following

:[ matrix form

" •l0 0 1 0 xi

= X (4-138)

SA B C D x3

14 J F G H X:'

where

A - (A2 A4 +A3K3 ) /(AIA 2 -A2)] (4-139)

B " - [(A 3A5+A,.K1)/(AjA2 -A•)I (4-140)

C f- (A2 +A 3)K /(AA 2-A2)] (4-141)

[D =- [(A 2 +A3 )K 2/(Ai-A )A] (4-142)

E ([(AA4 +A1 K3 ) / (A 1 -A:) ] (4-143)

2.F =" [(AIA 5+A3 K1 )/(A 1 A-A:)., (4-144)

G [(A +A 3)K 4 /(AIA 2-A)] (4-145)

H [(A1-A 3)K2 /(AIA 2-A 2 (4-146)

1

I'o
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The stote variable represen" ation of the linearized equations of

motion given above will be used to obtain the linear system response of

the inverted pendulum system for small motions about its equilibrium

position. This matrix representation is also used for the application

of the Routh-Hurwitz test to determine stabilizing control constants

for this system.

4.6 Summary

In thiz, chapter, the application of vibrational analysis to

legged locomotion systems has been described, and the basic equations

for the linearlzed systems of these dynamical systems have been deri-

ved.

It is shown that the system equations of the quadruped after

linearization yield a 12 x 12 r rstem matrix which decomposes into fc;ur

smaller matrices. These smaller matrices describe the various inde-

pendent vibrational systems of the quadruped postural system ccrrespon-

ding to the translational and rotational motions associated with the x,

y, and z axis respectively.

Next, using intuitive assumptions of a decoupled system, the

linearized equations for the vibrational modes associated with motions

in the y-z plane (x axis modes) are derived separately. A comparison

between the approaches, namely, the rigorous analysis, and the intui-

tive approach, shows that their ýesults are identical.

The chapter concludes with the derivation of the linearized

equation3 of motion for the inverted pendulum system discussed in Sec-

tion 3.4. These linearized equations will be used in later chapters

for computing the eigenvalues and eigenvectors of ýhe linear system

'4: =
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and hence obtaining the linear system response for small perturbations.

Then, the nonlinear system is excited along the sane independent vibra-

I: tionel modes, and Its response compared with the linearized system

response. It is shown in Chapter VII that these two responnes agree for

S[small motions to tbe desired degree of accuracy, thereby verifying the

nonlinear quadruped simulation, as w-ll as the linearizat•on tech.aiquss.

r
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CHAPT'ER V

EIGF1NVALUES AND EIGENVECTORS

5.1 Introduction

This chapter discusses the problem of finding the elgenvalues and

elgenvectors of the real, non-symmetric modal matrices obtained for the

linearized locomotion systems in Chapter IV. Eigenvalues and their cor-

[ responding eigenvectors are needed to compute the linear system response.

At the present time, practical computer programs for determining

U the eigenvalues and eLgenvectors of general, non-symmetric, real, square

matrices are not many in number, and numerical analysis techniques in

Iii this area are still being improved. The purpose of this chapter is

U mainly to outline the applicaiton of some recently published state-of-

the-art " computational subroutines in this area on the linearized loco-

motion system matrices. Accordingly, Section 5.2 discusses briefly some

of the methods for solving the complete eigenvalue problem for non-

Uw symmetric, real matrices. Section 5.3 outlines the use of subroutines

NSEVB and EIGENP for finding the ei~evvalues and eigenvectors of the

linearized system matrices of both the quadruped as well as the inverted

pendulum systems.

I 5.2 The Complete Eigenproblem for Non-Symmetric, Real Matrices

There are different methods available in the literature for

finding the eigenvalues and eigenvectors of non-symmetric, real

71
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matrices [56-59). Some of these methods are discussed briefly in this

section. In these methods, a series of simularity transformations are

performed in order to reduce. the non-symmetric matrix A to either a tri-

diagonal matrix, or a Hessenberg matrix with elgenvalues which are the

same as those of A but more easily computable.

5.2.1 Method of Lanczos [60]

In this method, a similarity transformation is used to reduce the

non-symmetric, real matrix into a tridiagonal matrix. The eigenvalues

and eigenvectors of this transformed izatrix are thsn computed.

5.2.2 The LR Transformation [611

This tuethod can be applied to an arbitrary Tratrix, however it is

particularly useful for matrices in the tridiagonal or the Hessenberg

form. 'This method is based on the successive decomposition of a sequence

of matrices tA I all of which have the same form as the original matrix.
k

The process of deriving the sequence {A.} from A by successive tri-

angular decompositions is called the Left-Right (LR) transformation.

"This method converges for a large class of matrices including all

symmetric, positive definite matrices, many matrices with distinct, real

eigenvalues, and many matrices with real eigenvalues which satisfy

neither of these two conditions. This method may not converge for same

matrices with complex eigenvalues. Also, triangular decomposition may

not always be numerically stable even for matrices having only real

5.2.3 The r)R Transformation [62]

This method is analogous to the LR transformation but is more

numerically stable since it makes use of orthogonal transformations



rather than triangular decompsition. This method becomes too laboriour

for arbitrary matrices, and is used mostly on special vnatrices such as

the Hessenberg matrix or symmetric-band matrices.L1  A good general purpose scheme for solviug che complete eigenvalu-e

problem for non-symetric, real matrices is to first reduce the matrix

to the Hessenberg form using the Gaussian elemiration technique, and then

to use the QR transformation on the reduced matrix to calculate the

U eigenvalues. The eigenvectors can then be computed by methods sLch as

the inverse-iteration procedure.

!J 5.3 Determination of the Eigenvalues and Eigenvectors of the
Linearized Locomotion System Matrices

The linearized locomotion system matrices for the quadruped

CU vibrational modes and the inverted pendulum system were derived in

Chapter IV. From the results of Chapter IV, the types of matrices under

J• consideration are of the following forms:

4j?~ 1 0 0 rl 0 00•I

A B C D 0 0 1 0

0 11 0 0 0 1 A B C D

A•• ] E F G H E F G H

where A, B,..., H are all scalars. Therefore, these non-symwetric, real

) -matrices may have rm il as well as complex conjugate eigenvalues and co-

?i • rrespondingly. real and complex conjugate eigenvectors.

After a snrvey of practical methods for determining the eigen-

values and eigenvectors for non-symmetric, real matrices, two " state-

of-the-art " methods that are particularly applicable to the problem

iiA
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at hand were found [63,65]. At the present time, the problem of finding

the eigenvalues and eigenvectors of general non-sy.nmetric, real matrices

is receiving a lot of atteation, and in Lhe neax future ;aore practical

computer algorithms should become avhlable.

In the method of Grad and Brebner (63'], namely subroutine EIGENP,

the following steps are carried out. The matrix is scaled by a sequence

of similarity transformations so that the .bsclute sums of the corres-

Sonding row3 and columns are roughly equal. Then, the scaled matrix is

normalized so that the square of the Euclidean norm is equal to unity.

This matrix is then reduced to an upper-Hessenberg form by means of

[ similarity transformations (Householder's method). Then the eigenvalues

are computed by the QR double-step method and the corresponding eigen-

[vectors by inverse iteration.

Subroutine NSEVB [64,65], is another program that can be used for

the numerical solution of the non-symmetric eigenproblem. In this

subroutine, the real general matrix is first reduced to an almost upper-

triangular form by stabilized, elementary, similarity transformations.

Then, the QR dctble-step algorithm is applied to the reduced matrix.

The eigenvectors are then computed by Wielandt's inverse iteration

mathod. For the case of well separated eigenvalues, rigorous machine

bounds are given for the computed eigensystem using Gerschgorin's

theorem.

The Fortran subroutine EIGENP and a Fortran version of the

original Algol subroutine NSEVB were used on an IBM 360/75 computer to

[ determine the eigenvalues and eigenvectors of the non-symmetric, real

matrices of the linearized locomotion systems of the type discussed

_[:
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p above. These matrices yielded both real and complex conjugate elgen-

values and eigenvect:ors which were then used to compute the linear

13 system response as discussed in Section 4.2.

13 5.4 Summary

This chapter has briefly outlined the methods available for

solving the eigenproblem for general, non-symmetric, real matrices. The

computationat algorithms used in this research for the determination of

the eigenvalues and eigenvectors of the linearized locomotion system

B matrices, namely subroutines EIGENP and ASEVB have alvi been described.

In this chapter, no attempt has been nade to present the computa-

D tional details of any of these methods. The numerical results obtained

0-on an IBM 360/75 computer are given in Chapter VII.

In conclusion, this chapter represents a brief introiuction to the

S1complete eigenvalue problem for real, non-symmetric matrices encountered

in the course of this research.

E
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Ch1APTER VI

STABILITY AND CONTROL OF LEGGED LOCO,'1OTION SYSTEMS

6.1 Introduction

The problem of stability and control of legged locomotion

systems has been studied from several viewpoints in the past few

years [16, 47, 51]. There are two aspects of the stability problem

Sfor legged locmotion systems, namely, static stability and dynamic

stability [66]. For some of the slower gaits such a3 the quadruped

crawl during which the machine is statically stable at all times, a

simple type of finite state control has been successfully used to

produce stable locomotion (151. For higher speed gaits such as tile

quadruped trot and the pace which are statically unstable in all

their phases, other means of control need to be used to produce

dynamic stability.

This chapter discusses one such type of control, namely, model

t reference control. Then the necessary and sufficient conditions for

the small motion stability of the quadruped and inverted pendulum

systems are derived. Finally, the application of the problem of stabi-

L lity of the inverted pendulum system to produce stable gaits. such as

the quadruped pace and a form of the biped walk is discussed. It is

1.suggested that stability for the biped is obtained by two types of

mechanisms, the body torquing mechanism for controlling attitude and

L. 76I*I
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lateral position, and the ability to choose the position in which the

feet are placed to maintain stability in the direction of motion [66].

1 •The last section of this chapter discusses the body torquing method of

control for producing a type of stable biped walk with the biped " mar-

IIching " at a constant velocity in the direction of motion with a pre-

• determined fixed stride length. Stability of the biped by vloving the

position of the feet to produce alternating fall and recovery phases is

not covered in this dissertation.

p 6.2 Model Reference Control

As explained in the introduction to this chapter, the dynamic

Bstability problem for legged locomotion systems becomes difficult for

the faster gaits such as the quadruped walk, trot, and the pace in

comparison with the finite state algorithmic type of control which can

Sbe used for the quadruped crawl, The faster quadruped walk contains

some statically unstable phases, while the trot and pace are statically

unstable at all times. Therefore, for stabilization of the more compli-

cated quadruped gaits, anoUier type of control called " model reference

control " is used for the locomotion systems discussed in this disserta-

tion.

Figure 5 shows the block diagram of a model reference adaptive

13 control system [67]. In this " closed loot ) control scheme, the adap-

tive controller is adjusted to minimize the performance criterion. The

output of the pla.nt c(t) is compared with the desired output c d(t) of

the reference model and the error e(t) c(t) - c (t) is minimized by
d

the adaptive mechanism so that c(t) approximates c (t) despite time
d

variations in the plant parameters. The reference model is assumed to be

q

4• *
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Reference Cd(t)
Model

Hy~t

u(t) Adaption J e(t)
Mechanism

L Adaptive u(t)I[Controller plI

i Adaptive Control System _

L Figure 5 Model Referenced Adaptive Control System.

free from any disturbing influences. The type of model reference con-

Il [trol scheme used in the simulation for obtaining both postural control

and stal•.Le locomotion gaits for the quadruped system uses a simplified

version of the adaptive control scheme shown in Figure 5. The contro-

ller used in the Rimulation computes the control inputs u(t) as linear

functions of the error signal. While more complicated nonlinear control

L schemes ought tG yield systems with better performance they are not con-

sidered in this dissertation.

For each type of gait an ideal kinematic model is assumed. For

example, for postural control, the reference model of the quadruped is

assumed to be standing on all its four legs with the feet vertically

L below the respective hip sockets. The leg lengths of the model are all

t

I.
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equal to to, the initial length and the angles c and P are all equal

to zero. The output of this ideal kinemat -model for the standing

Squadruped is then compared at each instant of time with the actual plant

and the controller outputs are regulated to minimize the error between

Li the r.ant and the ideal model of the system. Similarly, for the case

p when the quadruped is moving using a particular gait, the ideal kinema-

tic model for that gait is used as a reference model.

se In this dissertation the only type of control that has been con-

sidered for producing stable locomotion can be described as " marching

type of control. That iS, the ideal kinematic model moves with constant

velocity in the direction of motion, placing its feet in the desired

sequence along-predetermined points on level ground [47]. The actual

parameters of the ideal kinematic models describing the different gaits

and the control constants used for each type of gait are given in

1 Chapter VII.

j 6.3 Necessary and Sufflcient Conditions for the Small Motion Stability

of the Quadruped Locomotion System

[ one of the methods that can be used to determine the range of

control constants to assure small motion stability of the linearized

] legged locomotion system is the Routh-Hurwitz crite-ion [68]. This

test shows the number of right-half plane zeros of the characteristic

equation o' a linear syste-. If the characteristic equation of a linear

system conta,.ins control constants whose val..es can be changed, the

Routh-Hurwitz test gives a set of Inequality constraints on these cont-

rol constants which must be satisfied to obtain a stable system. The

detailed derivation of the Routh-Hurwitz stability criterion and its

-3
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applications can be found in the literature [68,693, and will not Se

given hei a. The method will be used below to compute the control con-

Sstants whiczh produce small motion stability for the quadruped system as

well as for the inverted pendulmn system.

The characteristic equation for the linearized quadruped system

can be obtained from the 12 x 12 quadruped system matrix given by equa-

"tion (4-59). But from the results of equation (4-59), the 12 x 12

system matrix is seen tc be deccmposed into four smaller iiLdependent

these modal matrices separately, and should yield constraints on the

~ control constants for stability of the system when the system is excited

to produce these vibrational modes. Of tLe four modal matrices, two are

of dimensioin 2 x 2, and the other two are 4 x 4 matrices.

Consider the modal matrix for translation along the z axis (see

[ equation (4-59)). 0 1
S[M] 1 = (6-1)

(where6-2)
-4C.
-49.

B = (6-3)

The characteristic equation for this mode becomes

det [M -_ I] X2 -BA - A 0 (6-4)

or
+4c 4C9X2 +1.- = + (6-5)m m

[L
IL
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The Routh array can be written as

J 1 -A

-B

From the above, the Routh-Hurwitz criterion gives the following

inequality constraints on the control constants for stability,4C
-- o > 0 + C> 0 (6-6)

M-B 0 or - . 0 qC> 0 (6-7)

The modal matrix for rotation about the z axis is given by

EM ] (6-8)

where

C= mg(a 2 + b2 ) 4(b2C + a2C)(6-9)

•_D - 1 2(6-10)
SII£2

•zz o .0

The characteristic 
equation is given by

X2 __DX C 0 (6-11) •

The Routh test gives the inequality conditions
SC < 0 (6-12)

SD < 0 (6-13)

Sinc,', a, b, t 0 I are all positive for the quadr,-'ed system

IAl

So z

~~-2



• [equations (6-9) and (6-12) yield the inequality

[b 2 C + a 2 C8 ] > ______+_b2_ (6-14)

4

which the control constants C and C8 must satisfy.

The inequality mf equation (6-13) along with equation (6-10)

I yield the condition
Ia 2

cc• > (6-15)C- C.8 b2

[which control constants C. and CA must satisfy.

The 4 x 4 modal matrices describing the translational and rota-

- tional modes associated with the x and y axes respectively, contain ele-

Sments consisting of rather long expressions as can be seen from equa--

tdons (4-59), and k4-64) through (4-79). Therefore the Routh conditions

Sfor these mAatrices will be derived in terms of the symbolic representa-

tions of these elements.

The modal matrix for the x axis m', des is

0 1 0 0

E F G H

L [131= ~ J(6-16)[31 = 0 0 0 1

[ I J IC L

R where E, F, C, TI, i, J, K, L are given equationz (4-64) through (4-71)

respectivEly. Th- _haiacteristic equation for this natrix M3 becomes

SX 4 -(F+L))X 3 + k:. -HJ-E-K)X 2 + (FK-GJ+LE-HI)X + (KE-GI) 0 (6-17)

L
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This characteristic equation can be written as

R X4 + a X3 + R X2 + R X + R 0(6-1)U 0 1 2 3 4

where the coefficients R through R are given by

R0 = 1 (6-19)

R, -(F+L) (6-20)

R2 = (LF-HJ-E-K) (6-2])

R3 = (KF+LE-GJ-HI) (6-22)

R4 = (KE-GI) (6-23)

1 The Routh array for this equation becomes

SK0R2 R4

RR R3

R R2-R 0 R 3

SRsR
3-R1 R4

R 6 - R5

Since R0  1 > 0, for stability

U R •0, > .i2,3,b (6-24)
i

Also

R5 > 0 (6-25)

R6 > 0 (6-26)

----- -
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The conditions RL > O and 11 0 yield che inequality

o ii ,(GI+1II+EF+KL) (6-27)
(LF-1J) > (tA-F)

S[ obtaineFrom equations (6-26) and (6-27) th•e following condition is

4 ~obtained i

S(FK+LE-GJ-R) [ (LF-iHJ) (L+Fx-(GJ+HI+E!'+hL) ]-(F+Lý (KE-GI) < 0 (6-28)

SWhstltution of equations (4-65) and (4-71) for the quantities F

and L into the coadition R1 > 0 gives after simplification the express-

Ic.Il - ma2 t 2 C.] < [Iyy+ m(O+C)2 - Ca
0 LO

which C , C., and C. should satisfy.

Simplification of the condition R2 > 0 by substituting express-

ions for EFr H, J and K yields the inequality

4a 2 C.(C._. C.)+C (I -,,m( +c)21 + m a2 Ca- > [I +mc(9 +c)]mg.t£ a 0o a" yy o yy 0 " o

4

(6-30)

SThe condition , > 0, reduces to the inequality

(" a Cc.+c.c ]-a2 c1 cC-¢g[a Z.C +(I+C)C.j > 0 (6-31)

a L a oL , a

Finally from equation (6-24) the inequality condition R4> 0

yields

yield 2C + C [mg(lo+c)-4a2 C9 .  < m2 g2 Z c (b-32)

4

In the above results, if some of the control constants are either

zero or proportional to each other for particular gaits, these equations

ALt
_,•-~--
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"can be simplified Further and should give a more meaningful set of in--

equality constraiats on the control constants fruo which the allowable

range for Lhese constants can be determined.

The matrix for the y axis modes is given by

F0 i 0 0

SN P Q
[M4 j = (0-33)

where M, N, F, Q, R, S, T, and U are defined by equations (4-72) through

(4-79).

Thle characteristic equation for this matrix M4 is given by

S1 + SX + 2 + S X + S', 0 (1-34)

where

0S 1 (15-35)

s= -(N+U) (6-36)

S2 = (NU-QS-T-'-1) (6-37)

S3  (NT+MU-PS-QR) (6-38)

S4 = (MT-PR) (6-39)

Since S. I > 0, for stability

S > 01 1 1,2,3,4 (6-40)- i

"3 lAlso

S 5 > 0 (6-41)

S6 > 0 (6-42)

An expression similar to equation (6-27) is obtained from the

kluthi array using equation (6-41) and the condition S, > 0.

IiA



86

(NU-QS) > (- ..... (6-43)

'te condi.tion S6 > 0 and equation (6-43) yield an expression

similar to equation (6-28) for this particular vibrational system re-

presented by matrix M4 . 4i

"'" ( W_'PS-QR) [(NU-QS) (N-+U)-(PS+QR+1.4N+TU) ] - (N+U) 2 (MT-PR) I < 0
(6-4/t)

A set of results similar to equations (6-29) through (6-32) can

be derived for the modal matrix ?44 describing the y axis vibrational

modes. Froan the condition Si> 0 one gets upon simnplification the

inequality C.

l[C.Ixx + mb2 l£oc] < Ix+ m(9+C) 2 '1 (6-45)
09

The condition S2 > 0 yields th.e inequality
2 2 mgto

4b2Ci(CA+Ro2C .)+C6 [m( o+c) 2+I ]4mb 2 12C +I I C > [I +mc(z o+c) ] -g --

•- (6-46)

Similarly the condition S3 > 0 reduces after simplification to

the condition

b 2[ C+ JO2•o[C + +C.[to b2 ] -Og > 0 (6-47) 9

Finally, S4 > 0 results in the condition

2 22g2 •,oc

mgb 2 oC +C [mg(Io+c)-4b 2.oC] - 4b2LoC C y (6-48)

The above inequalities are the necessary and sufficient condi-

tions for the small motion stability of the quadruped locomotton system.
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In the next section, algorithms are derived to choose a set of control

*i constants which produce a stable system and the controllability of the

j, system is thus proved.

I 6.4 Controllability o' the Quadruped Locomotion System

In this section algorithms are developed for obtaining at least

one solution to the Routh-Hurwitz inequalities derived in Section 6.3.

The existence of at least one set of stabilizing constants proves the

i, controllability of the linearized quadruped system.

SITo simplify the analysis, it is assumed in the following that all

the control constants are equal to C. This gives the condition

SCa = C C Ca M Ct W Ci = C. M C = C. W C (6-49)

From this assumptio.t, the Routh-Hurwitz inequalities for the z

axis translational mode (see equations (6-6) and (6-7)) are satisfied if

C > 0.

Applying equation (6-49) to equations (6-14) and (6-15), the in-

"equalities associated with the z axis rotational modes, results in the

JI conditions

C> (6-50)1 4
b2 > -a2 (6-51)i

The inequalities of equations (6-29) through (6-32) yield upon

I substitution of equation (6-49) the expressions

(t -1) < [M(t0+c) 2i2t2 < (6-52)

2 2 2 2 mgLo (6-53)4a (I-£o)C +[Il_+m(ko+C) 4ma Zo]C > [I +nC(.Eo+C)] l-
yy yy

I

-_=- -- _____ ______
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•[ ,,,•;.,gL J6•,-• -;C2.... (6-54)

+_•- qa th-L0 )

Smg(a 2 9,o-I-1,+C) 2g2c
SC2 -C > (6-55)F: 4a2  

a
2° 24a 16a

- An algori-.hm can be developed by choosing C to satisfy equation

(6-50) as well as conditions given by equations (6-52) through (6-55)

for particular values of a, b, c, m, and to.

For the case when C - 0, a similar set of inequality conditions

zcn be derived for the modal matrix associated with translationa and ro-

tational motion about the y axis. From the above analysis a particular

set of .. introl constants ccn be found such that all the inequality con-

[ ditions of the Routh-Hurwitz test are satis t a d. This proves the con-

trollability of the quadruped locomotion system for small motions about

IE its equilibrium position.

A computer program was written to obtain sets of control con-

stants Ca , C, ca, ca. Cj, .i, Ci, Cy, and C. that satisfy the Routh-

if Hurwitz test for all the modes of vibration of the Quadruped system.

if 6.5 Stability Criteria for the Inverted Pendulwm System

The Rctuth-Hurwitz stability test is now applied to the linear-

if ized equatl ins of motioa cf the inverted pendulum system derived in

Chapter IV. From equation (4-138), the characteristic equation of this

:1 system is given by

I X4 _-(C+H)X 3 +(CH-DIG-F-A)1 24(CF-BG+AH-DE)x+(AF-BE) - 0 (6-56)

where the quantities A, B, C, D, E, F, G and H are defined by equationsUt
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(4-139) through (4-146) respectively. Substituting for the quantities A

through H the expressions given in equations (4-139) through (4-146) and

simplifying the resulting expression yields the characteristic equation

for the inverted pendulum system in terms of the control constants and

the parameters m, g, 1, r, and I as follows

IR 0 + R1 0 R2X2 + R3X + R4 = 0 (6-57)

I where
SR0 = U•2 (6-58)

R, = [(I/m)+r2+Zr]K4 - K2 W(L+r) (6-59)
[(I/m)+.-r2+Zr]K3 - K1i(t+7r) - (glIftglr2+mgT 2 r) (6-60)

R3= g(K 2 1 - K4 r) (6-61)

R4 g(mgtr + Kjt- K3r) (6-62)

SSince R. = 122 is positive, for the stability of the system

Ri•> 0, i- =,....*4 (6-b3)

Also from the first column of the Routh array

(s 1 R2 - R0 R3 )

R 5 = R1  > 0 (6-64)R,

S(~~RsR - RIR)
R6  RI > 0 (6-65)

R6 R5

II From equation (6-63) observing that R should be greater than

zero, equation (6-64) reduces to the condition1 R0R
RR1 - R0R3 > 0 or R >2 3 (6-66)

411



90

OR Similarly from equations (6-63) and (6-64) and the condition

R > 0 tha following inequality is obtained.

(RJR• - RoR 3)R 3 - RJR4  ' 0 (6-67)

SIf the inequality constraints given by equations (6-63), (6-66)

and (6-67) can be satisfied by a set of control constants, then such a

set of constants will produce a stable system. In the next section an

algorithm is givet. for obtaining these stabilizing control constants for

the inverted pendulum system.

6.6 Algorithm for Obtaining Stabilizing Control Constants for the
SInverted Pendulu System

The Routh-Hurwitz criterion for the inverted perndulum system con-

_ sidered in this dissertation can be written down in the form of the in-

I equality conditions of equations (6-63) through (6-65) given in Section

_ '6.5.
' An algorithm is now developed for obtaining at least one set of

control constants that satisfy all the above conditions, thereby proving

4 the controllability of the inverted pendulum system.

~ From equation (6-63) using the conditions R > 0 and R > 0

results in the following

Rf=[(I/m)+rz+tr]K4 - (2A2-tr)K > 0 LK( > W r) 2 (6-68)

R 3  g(K 2 - K r) > 0 K (6-69)31
Therefore the constraints on K1 and K2 are

S[I
S[S



aK2 < K4  < I a2 0r a < _ (b-70)
b- r b T2o 2 r

where

Sa Z (Z+r) (6-7i)

b [(I/rn)+r2 +r] (6-72)

6.6.1 A Particnlar Solution

U ro derive a particular set of control constants that will produce

i able system, choose

- (1) K4  VK 2  (6-73)

where

ix = .1[(a/b) + (t/r)] (6-74)
2

(2) K =r K3  (6-75)

:j The constraint 0 yields

ROR 3
R5 R2 -0 (R (6-76)

R1

whereSR o RR ý
R0 R3 =(6-77)

Ii The constraint R > 0 can be written as

R3> (6-78)
[ILz -(ROR3/R 53  (R - n) (7

II
""A particular value o n can be obtained by using equation (6-73)
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in the equation defining n, namely equation (6-77). This particular va-

Ir lue of n, namely n is then given by the expression

p2
SI't g(t- ru)

: "(6-79)
P (a - b)

Therefore from equation (6-76)

R2 > (6-80)

From equation (6-78)

SR3 > (R2 - n p (6-81)

[ Substituting the condition K, - _ K31n the inequality condition

R4 > 0 results in the condition

R4 = mg2ri + gtK1 - grK3 - mg2r' > 0 (6-82)

for any value of K3 . Since R0., R1 , R3, and R4 are all greater than

zero for the particular values of the control constants chosen above,

from equation (6-81) the only other condition that needs to be satisfied

is

R2 > n P(6-83)

[ Upon substitution for R2 and n from. equations (6-60) and (6-79)

into equation (6-83) and simplifying results in the sondition

K3 > U(m2gtb/IN + (mgt 2 r/b)] (6-84)

"where a and b are defined by equations (6-71) and (6-72) respectively.
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_ Therefore a particular solution that yields a stable inverted

pendulum system can be chosen by an algorithm as follows:

1) Choose K4 = iK2 where p - [(a/b) + (f/r)]
2

2) Choose K3 such that it satisfies the inequalIty of equation

I • (6-84).

3) Choose K1 -- •K 3

These steps should yield a particular set of control c,nstants

Kit K2 , K3 , and K4 whikc produce a stable system, thus proving the con-

Stro.% ability of the inverted pendulum system.

1 • 6.6.2 General Algorithm for Computing Stabilizing Control Constants

A more general algorithm which describes the procedure for ob-

j]taining stabilizing control constants can be obtained as an extension

of the theory developed so far.

I Choose K4 -z •K 2 where I, can now have any value within the limits

0[] 3et by the constraints of equation (6-70). Then the conditions R0 > 0,

R > 0, and R3 > 0 are satisfied.

U The constraint R5 > 0 yields after simplification the condition

K3 > -(b/a)K 1 (mjLbe) + I2(' b) (6-85)a(ap - b) (-5

i The condition R4 > 0 yields in this general case the inequality

SK 3 < [K (1/r) + mgL] (6-86)

Ii
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STherefore a general algor!.thm for finding the control constants

that satisfy the Routh-Hurwitz test for the inverted pendulum system

S[ consists of the following steps:

1) Cuoose any value of K2 .

2) Chocse P such that 1 < <i .

3) Choose K = UK4 2

4) Substitute this value of U into the inequality (6-85).

Sr. 5) Choose any values of K1 and K3 which satisfy the inequality

constraints (6-85) and (6-86).

[ This algorithn has been programmed on a digital computer and the

designer can get a set of control constants that satisfy all the condi-

tions of the Routh-Hurwitz test. A liscing of this program is given in

the appendix.
L

6.7 Stabilizing Control Mechanisms
The general form of the control schemes used in the quadruped si-

Smulaz:ion has been discussed in Chapter IV. In this seLtion the details

of these contro3 laws for the different gaits are discussed.

As pointed out in Section 6.2, the model reference control system

is used for the control of the quadruped t lation. The modeJ used for

[•. the various gaits is assumed to be moving with a constant veiocity in

the desired direction of travel placing its feet at predetermined points

along the way. This type ot an idealized walking systen, corresponds to

a "marching " type of locomotion system. The model reference control

IN
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ssvtan compares t"ýe various translational and rotational componp':it.- '-'F

the actual system witih the idealized model, and produces correction tor-

it ques and forces.

The type of ccntrol laws used for the quadruped simulation have

been stated in Cnaprer IV and are repeated here.

The torque applied to the body by the hip motor of leg i is given

by the relationshi.p

M.~i a(Ii ( a C + C-u (6-87)

rhe lateral cont-col torque is derived from a centering spring and

anc, damper system a.nd has the form

SC (3 - 8a) + C8.i + Cy + C.V (6-88)
i C1  Y E y

ri Vertical controil is obtained by using the control law

Cf -C( i - O/ +CL - c (6-89)z g

Sin which the constant C describes the effect duc to gravity.

Equations (6-87) through (6-89) describe the general type of

control laws used in the quadruped simulation.

For the following cases, namely, the quadruped postural system,

the quadruped crawl (which is a slow speed gait with no statically un-

stable phases), and the quadruped walk (which has some statically unsta-

ble phases), the control laws given above were used with the constants

'k, Cv, and C. all equal to z--.

x |v
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ror the quadrtiped trot, which is a fa6ter gait than either the

crawl ov the walk, and which has no statically stable phases, it was

necessary to use the general equations with the lateral torque Ts8 de-

pendent )n both y and YE in addition to the usual 8 and A terms.

For the quadruped pace, whic- is a faster gait than the trot,

and in which the quadruped rues its legs on the same side alternately,

it was necessary to incorporate a different type of cnnzrol law for

lateral control.

Frcmn equacion (4-124), the control law used for the inverted

pendulum system is of the form

T= K1 2 + K2 ,2 ± K301 + K4;1  (6-90)

As viewed from the y-z plane, the quadruped looks like an inver-

LeZ pendulti. Therefore a correspondence can be establis: I between the

inverted pendulum system and the lateral control mechanism of the qua-

drupfd. The Lontrol law that is used for the lateral control of the

pacing quadruped is of the form

1

T = " 0 [K.4 + K2 p + K3 (0+08) + K4 (p-+;)j (6-91)

where K,, K2 , K3, and K4 are the control constants computed for the in-

verted pendulum system and ý, p, 3, 8 are the paramecers of the quadru-

ped locomotion system.

6.8 S•mmary

Thiis chapter has discussed the type of feedback control sys-

tems as well as the stability criteria used to produce digital computer0 I
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simulations of idealized stable quadruped and biped gaits. For the

quadruped system, the modal matrices derived in Chapter IV were used to

obtain the characteristic equation for each mode after which the Routh-

lHuriitz ,_riterion was applied to get sets of inequality constraints

amon the control constants. hlen the above procedure was repeated for

the type of inverted pendulum system considered in this research.

Algorithms were developed for both systems to compute sets of

control constants which satisfied all the constraints of the Routh-Hur-

witz test. Finally, the control mechanisms used for the various qua-

u druped gaits and the correspondence between the inverted pendulum syb-

tern control law and that of the quadruped pace was described.

Chapter VII gives aetailed descriptions of the various quadruped

[• and biped gaits, the different vibrational modes of the quadruped pos-

tural system, and the inverted pendulum system.[

[

I

•°I



CHAPTER VII

I COMPUTER SIMULATION

7.1 Introduction

The objective of th 3 chapter is to present details of the

digital computer simulations of the different quadruped and biped

gaits as well as the results of the application of vibrational analysis

on the quadruped locomotion system. Accordingly, Section 7.2 d'icusses

the results of the vibrational analysis techniques used in verifying

the nonlinear quadruped locomotion system. Section 7.3 outlines the

details of the kinematic and dyn - Ic parameters used to obtain :iable

quadruped gaits such as the crawl, the walk, and the trot, The neCA

section describes the results of computer simulation of the inverted

pendulum system along with the application of the Routh-Hurwitzr
analysis for obtaining stabilizing control constants. Section 7.a

details the application of inverted pendulum analysis for simulating a

,o stable quadruped pace. Finally, Section 7.6 covers the simulation of

ta certain type of biped walk. This chapter contains only the results of

the various simulations. The actual computer programs used are listed in

the appendix.

7.2 Vibrational Analysis

This section discusses the results of the verification of the

nonlinear quadruped locomc.ion system simulation by vibrational

98
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analysis. The results of Section 3.3 were ueed in programming a non-

linear digital computer simulation of the cLJadruped loromotion system

consisting of a mass supported by four massless legs. By using differ-

ent types of reference models for the ideal quadruped locomotion system

in this simulation, both postural control as well as stable quadruped

gaits were simulated.

F1 In vibrational analysis, the quadruped was assumed to stand on all

its four legs, with the feet vertically below their respective hip socket

joints. Figure 6 is a photograph of the computer generated display of

j the quadruped postural system. Figures 7 through 9 show the digital

computer displays of the vibrational modes excited in the nonlinear

simulation of the quadruped locomotion system. These figures give a

.Iqualitative idea of the translational and rotational motions produced

about the x, y, and z axes for the quadruped when postural system is

excited to produce the various independent vibrational modes. However,

a quantitative idea about the response of the quadruped simulation to

these vibrational modes is needed.

From the results of Section 4.3 (equations (4-59) through (4-79)),

the linearized system matrix is seen to decompose into four smaller

matrices. These matrices describe the .ependent vibrational modes of

the standing quadruped locomotion system. The folls,'wing procedure is

adopted for the .ibrational analysis of this system:

1) Subroutine NSEVB Is used to determine the eigenvalues and

corresponding eigenvectors (real or complex) of the real,

nonsymmetric modal matrices of the linearized quadruped

locomotion system.
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Figure 6. Computer Cenerated Display of the Quadruped
- Postural System.[

[

SFigure 7. X Axis Vibrational Mode of the Quadruped

Postural System.

1N

I• r.,,Ll



jU~

Figure 8. Z Axis Vibrational Modes of the Quadruped
elk Postural System.
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2) The small motion response of the linearized system for the

various modes is then computed using subroutine LINEAR. Sub-

routine LINEAR computes the response of the linearized system

for each mode by perturbing the system vzing one-tenth of the

actual values of the components of each of the twelve eigen-

vectors (real or complex) of the linearized quadruped system

computed in step 1 above.

S3) The nonlinea- simulation is then excited along each of the

same twelve eigenvectors using the same values as in step 2

above, and its small motion response recorded.

Tables 1 through 4 list the four modal matrices, their computed

eigenvalues with error bounds, and corresponding eigenvectors for one

particular set of control constants, namely, C = 9000.0, C. = 200.0,

C 9000.0, CA = 200.0, C 1500.0, Ci - 100.0, C. C =C = 0.0.
x y y

Figures 10 and 11 show the transient response of the quadruped

postural system for certain x and y axis modes. Figures 12, and 13 des-B cribe the response of system to the translational and rotational motions

of the z axis modes respectively.

Table 5 is a sample of the linear system response when the system

is excited along the first elgenvector of the x axis modal matrix given

in Table 1. Table 6 gives the response of the nonlinear quadruped sys-

tern for the same excitation.

From the transient response of the quadruped postural system to

the different vibrational modes (Figures 10 through 13), as well as from

the sample sets of data given (Tables 5 and 6), it is seen that the non-

linear and linearized quadruped system responses agree to within11

I
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TABLE I

Modal Matrix, Elgeiwalues, and Elgerivectors
for the X Axis Vibrational Mod~es

ID As ?.St) Re 1.00 to 0.2% LFNGTHs 3.00 PASS*20*00
mOmENTS OF INERTIA

IXX* 7.0633 tYYs42.0a33 UlZ.48.3131

CONTROL CONSTANTS

CA* q006'.0000 rICAw '00.0000 Cbs 9000.000v, OCR* 200.0000
CUS 1500.0000 ICts 100.0000 OCXm 0.0 cya 0.00

rIcyn 0.0

**X-AX1~q TRANSLAYIONAL & ROT&TtONAL W;40PAL MATRIX**

0110000000 0.0 0.0

-1R9*266663 --.4444444 -647.316650 -14.444444

ffl0.0 n.0 1,0000000

-107.635'.98 -6.064691 -1890,90SZ?3 -0S1*716187

COMPUTFO F IOENVALIJES

'40. REAL PART IMAG. PART EF&RDW SOUND

I -2*1406259%4 8.560431671 0.0001916?4

7 -7. 140675954 -8.560431671 0,000391974

3 -40.939682007 15.313S23293 0.002315914

4 -40.9396R?0fl7 -15*1135?3791 0000717S914

COMPUTFD VIGFNVFCTOR NO.w I

REAL PART Y'MAG, PART FAROR ROnUND

10000000 0100.000020361

-0.0:76286 -0,106377820 00.OO0oO?R6

-0.165058970 0.01192S749 0,0001?6394
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TABLE 1 Continued

II COMPUTED) EIGFNVECTOR NO.* 2

tkEAL PART VMAG. PART ERRORt RO)UNDW

F-0. 02S?70?86 0. '0663?1?t) 00000002369

1.000000000 0.0 0.000020361

0.0076s687? -0.016?789?4 02000004073

-0.165058970 -0.031925749 00000126384

I- COMPUTED FIGENVECTOR Nfl.s 3

REAL PART IMAG. PART ERRO)R M~UD4

-0000199276?T 0.001950445 000000021its

O*0S16q4S94 -001103S919? O00OO0250V)

-O.02l478082 -0.008015189 O0*0O 002lO5

1.0000000000 30.0 0.00000032s3

COMPUTED ftGENVECTOR NO.=-

RELPRTIAPAT ERO ON

In0117? 00154S .0023
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TABLE 2

Modal Matrix, Elgenvalues, and Elgenvectors

for the Y Axis Vibrational Modes

nleý'th OF "OT~thih 2.5 R.% 5: .0ft Cu 0*2S LFNT4(tH2 3.00 v -'o_?o.oo
I*ONFNTs nF INFRTIA

1EXu 7.0413 IyYm4?.fl5V3 1l7-48.131

CONTROL cnNSTANTS

Ctv 1%00.0ftl:O riCA - 100.0000 nCy: nOO.1l OCR: 20. t)

*.*V-AYTS TRANSLATIO'ILL &~ RnTATTONAL uOflAL MATRTX**

0.n I.0oflonf 100 (00

-Ia9*?f6#,E,3 -4,4414444 64?,316650 14 , 4 4 4 4 4 4

f.'n 0.0 (10t0 1.000000

1R7'7.7?IST'5 40.754432 -i7fl?,140&?S -139.0196*4

t0'iPuTFO FIGEP4VALUFS

4n. RF41. PART t"AG. PART ERROR BOUND

1 -fl.745494d?1 1. ?54101 75A 0.000611827

2 -n,74SR41~73 -1,7S410175A 0.0000&US?7

3 -48. 164916902 0.0 01009912821

4-t4A.80bA?427qt 090 e*010169104

Cn*PIJTEO FTGE14VFCTOR N0.w I

SEAL PART tI AG. PART ERROR BOUND

-0. 050649463 -0.256769693 0.000021063s

!.000000040 0.0 0.000012166

-0.015198555 -0*069005013 0.000011924;I:0.270392166 -O*00561474* 0606~0S64430
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TA~BLE 2 Continuad

Cr14PUTFO FjGFNVFCT(r ' fl~s 7

RFAL PART ImAr. PART FRRMIM~~UND

-0' 20Th&26969,1 0,001~021063

t~n~¶f00 0.,0 0.00CMI?160

-~.01lQ~i5 0.69300513 0000011IQ24

0l.27nl392166 fl,00%6147,9 0l,,000164130

cnl4PuTfn F!GFNVECTOIý Mn1.m 1

4FAL PA'IT !RAG, OART FORMf A0um1)

-010?f0761497 0,0.10000"2ORi

t~nOOOflre 0.0l00fl7A-

COKOUTED FirF#4FCT0R NO*- 4

JIRrit PART VMAG. PART FRROR MUM)if

0.0004q!44% 010 .00015

-0,070679545 Denl 0.00000779Y

-61"f069%1701 0. 00oOOo7

L .06OM;OoV 0., 0.f0001077s7

L LARGEST OSboUALmil6944 9 111211- 0 1
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TABLE 3

Model Matrix, Eige:avalues, and Eigenvectors
for the Z Axis Translational

FF Modes of Vibration

9OMENSIO4S OF RflOY

Au ?.50 Ra1.00 Cm 0.25 LFNGT~u 3.00 MtSS-2O.0O

MOMENTS OF INFTTtA

FilTXXw 7.08331 yv203 ?*R31

tONTROL CnNSTkNT3

C=qn00.0n00 fir A- n00.00fl0 cis* ,)~OO.onoo Ocr~w 200.0000)

nrys O'n

*07-AXTS 7111'ViLATmfNAL mnnAL "ATRIX**

0.0 !000O(60

-.100.000000 -70.000000

CflUPIJTFO FIGFNVALUFS

NO.l RfAt, RT NiAG, PART ERROR Boumnf

I -O~~t~,to0 14.14713567C, 0.000051281

7 -l.OO0fl0~fl -14.142135&70 nl.00Q512FR2

CnMPUTED FTCENVFCTOR 40E.m t

.FAt PAR! ikG PART FRRAR R0UNfC

-0.033333331 -A,0l411404951 0.0000000ps

COMPUTED) F1GFNVFCTM-. 40.w 2

RFAL PAWT !iqAG* P.I*Y ERROR SOUND

-0.033333331 0,04fl4.04SII 0.0000oQs8

1.000000000 0.0 0.-000000000

LLUtGEST ,'ES1OUALs0.3178914390-0Pt



TABLE 4

Modal Matrix, Eigenv.2lues, and ElgenvectorsIrfor the Z Axis Rotational
Modes of Vibration

fl1mFN~10Is nF RODfYIr7-'50 R- I-.IO Cm fi.75 I FNGTH- 2.160 "AeSS.20.n0

"4W~41s OF INFRTTA

IXX* 7.0033 1YV.'4,?,-0R33 IZ=4F.3341i~~i cO'TP.OL CONST~ANTS
CAU Q000.0000 OCA. 200.0lO0C CAM 9000.0000 DCRM 200.0000
rts mo0.oonfl Oct. 100.0000 DCg- 0.0 CYN 0.0

fltYm 0.0

IF ',*I-AXIS ROTATIONAL MO0DAL MHATR!X*#

1).0 1.0000000ir-51.7.000049 -t3.333341

COMP1IfFD EIGFNVALUFS

'40. AFAL DART. IMAG. PART ERROR BLVSND

1 -6.666671?9,3 2?*?.7696831?', .0000108706

COMPUTFO EI0GF4VFCT0R tND.u I

RVAL PART IMAG. PART FRRGR 1m0Uo

-~0I747?5 0.04029051(% 0.000000096

Ii11000000000 0.0 0.0000000000

I tARGFSY RES YOtJAL00. 269259626D-.0?
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Linear System Response of the Quadruped Locomotion
System for a Particular X Axis

Vibrational Mode

DINENSICN• OF BODY

Ax 2.50 Ru 1.00 Cm 0.25 LENGTH= 3.00 MAF.Sz20.O0

1O4MENTS OF INIRTIA

IXX- 7.0833 IYY=42.0'33 iZZ=48.3333

CONTkOL C(.STANTS

CA= 90.000000 OCA= 200.0000 CP= 900n.0000 DCBx 200.0000
CL= 1500.0000 0C1= IOC.0000 DCX= 0.0 CYr 0,0

()CY* 0.0

**X-AXIS TtRANSLATI(NAL & ROTATIONAL MODAL MATRIX**

0.0 i.0'000"0 0.0 0.0

S-18O.266663 -4.444444 -b47.313650 -14,444444

n.o 0.0 0.0 1.000000

-337.635498 -6.864o91 -1690. 905273 -81.716187

CnmPUTED EIGENVALUES

NO. RKFAL PART I4AG. PART ERROR BOUND

1 -2.140625954 F.P6043167i -1.000000000

Z -2.140625954 -9.860431671 -1.00I000000

S3 -4•.939682CC7 15.313523293 -1.000000000

4 -40.93q682007 -15.3135232'ý3 -1.000000000

- COMPUTED EIGENVECTOR NO.= I

REAL PART IMAG. PART ERROR BOUND

-0.0c.,764219 -0. 106632531 -1.000000000

0.999499940 -0. 000000000 -1.000000000

0.007656947 0.016776852 -1.0n0000000

-0. 16S051877 0.031954452 -1.000000000
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II.. TABLE 5 Continued

Ca1MPtTF,T rfGFNVFCTOD Nli.= 2

. KEAL PART IMAG. PART ERROK BOUND

-'0.f2576421i t,. 1'rbe •6 T 1 -1.000000000

S[ -0177~-100000
O.999qgq'9O 1.0') )00000 -1.000000000

0.007656947 -).01f,77b'452 -L.000000000

S-0.19QO5877 -C. 031954452 -1.000000000

COMPUT'D 'IGENVECTJR NO.= 3

REAL PART IMAG. PART ERROR BOUND

-0.0C'1989994 -0.001q50331 -1.000000000

0.051641701 -C.110332429 -1.000000000

L --. 071427996 -0.00RC1318I -1.000000000

0.9999q98H1 -,.O C.00000 -1000000000

SCOMPUTFD FIGT"NVNCTNRE NO.= 4

1 RAL PART IMAG. PART ERROR BOUND
-0.rO', qS9994 -0.0°•1950331 -1.0000000000

0.051681701 n.1 103243Z >o -i.00000000

R-L-0.02142.7996 0.008013181 -1. 00001,0000

I 0 99999980& 1- O0 -. 1 -1 V000000000

LARGEST R[ S DUALxO.r;5069719D-0O

E iGENVALUE

SALPHAz -2.14;t0626 C OMFGAz 8,,604317

O.19COMPUTED EIGENVECTOR NO.al

REAL -ARNT IMAG, PART

-,25764210|E-02 -9 106632466E-01.

L O. ~09999990k6E-0-O -. 3552712?41E- 15

O.? 7j.694305E-.03 O. 1677644,49E-O2
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TABLE 5 Continued

LIf-AF SYSft-4 RLSPP(NS

11t4F A 0

3.0 -,).,0Th76421 tX.%',,(( 0.00C765694 -r.016505182

0. 1000 0.00.57?331 r. OS I C6 LI•' 4 -0.000658113 -C.010425717
0.1000 O.CC7144954 - .(11. 1n1)?,? F -0.001171093 C.OOOl'h47

0. 3000 0.103804'10A, -0,04•-;A38 7h -f. 00076 7011 C.006907232
0.4.000 -0.J(X?6767?1 -).(. 14079494 -0.000020037 0.006981898
O.SoC -0.A376SP.47 -n. (1095414•84 0.000479422 0.002628280
0.6OCO -O.nO28834774 0.015O7r-896 0.000502646 -C.001866303
0.1000 -0.000766429 0.072274811 0.000200849 -0.003618805
q.ao0n 0.001064826 O.C1250?614 -0.000122481 -C.002479206
0.9000 0.001586908 -0.001749458 --0.000255978 -0.000173288
I.COOr 0.c(%09Z6575 -0. 0099A,4860 -0.000181580 0.001438810
1.1O0n -0.1"(1O09019 -0(0:'90053 75 -0.000018603 0.001582257
1.2(9' -3.000693757 -0.nn2121440 0.0n0099345 C.000678088
1.3030 -W0. 70065109. 0.C03089 895 0.000113575 -0.000338732'1..O0O -0,,)C0212770 0.0049290?7 0.000051237 -C.000787850
1.5000 0.300207066 A.103019796 -0.000021697 -0.0005837E7
X.6003 0.AC0350S23 -n.COO1?8596 -0.000055549 -0.000082703
1 .7100 n.000222596 -0.002099423 -6.000042587 C.000296018¶1, 4.000 -0.000000860 -0.002060124 -0. 000007287 0.000356193
1.9000 -0.000145960 -3.100735557 0.000020314 C.000170824
2.0000 -0.000148489 0.000591496 0.000025494 -C.000057697

S2.1000 -0.0C00585 2 0.00109ý416 0.000012795 -C.o001 ?0250
2.2000 C.000039065 0.000720897 -0.000003549 -C.000136258
2. 5000 0.OV0076724 0. 000C30nA4 -C.000011963 - C.000028189
2.40C0 0."n05289c - 0.0004391 109 -0.000009904 C.000060016
2.5000 0.oono04009 -0.000468023 -0.000002317 C.000079660
2.6000 -0.900030377 -0.000141179 0.000004088 C.000042235
2.7000 -0.000031633 0.00010919Z 0.000005685 -C.000008786
2.8000 -0.000014549 0.010236487 0.000003141 -0.000030498
2.400C 0.000007062 a.nno170339 -n.000000497 -0.000031546
3.0000 0.000016694 "),,OrOO010824 -0.000002555 -0.00000842 8
3.1000 0.0n0012445 -. 000090770 -0.000002285 C9000011953
3.2000 C.nO0001879 -G. PnI05614 -3.000000668 C.000017699
3.3000 -C.000006243 -C'.000048697 O.000000807 0G000010284

3.4000 -0.000007568 0.000019101 0.000001259 -C.000001033
3.5000 -0.000003659 0.000051245 0.000000760 -0,000007757
3.6000 0.000001195 0.000039882 -0.000000044 -0.000007249
3.7000 O.000003605 0.000007329 -0.000000541 -0.000002347
3o8000 0.000002903 -0.000018508 -0.000000523 0.000002326
3.9000 0.00000061S -0.000023676 -0.000000182 0.000003906
4.0000 -0.000001264 -0.000012116 0.000000155 0.000002472
4,.a00C -0,000001692 0.000003057 0.000000277 -o.oo0000021
4.2OCO -0.000000904 0,0000110!9 0.000000182 -0.000001633
4.3000 0.000000180 0.000009260 0.000000005 -0.000001654
4.4000 0.000000772 0.000002275 -0.000000113 -0.000000625
4 *.50O0 0. 00000067? -0.o000003T2 -0o000000119 0.0oo000440
4.60CO 0.000000182 -0.0000052 73 -0.000000048 . 000000856
4,7000 -O.O00000251 -0.000002966 0.000000029 0.000000586
4f' 4.6040 -0. 00000036 0.000000404 0.000000061 0.000000042
4.9000 -0.000000220 O.000002O49 0.000000043 -0.000000340
5.0000 0.000000020 0.66666f33 6.0'6006W04 -GbW600375
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wal TABLE 5 Continued

5.1000 0.o000001b4 t).1'00000647 -0.000000023 -01000000161

%.2?OC o).non000n15' -0.Ot00000729 -0.00000002? 0,0000000ae0

5.3000 C0.00000051 -0.00"~01167 -0,000000012 C.000000186

5.40C0 -0. 0(000000%4Q - C. (, (10007 10 0.000000005 C,000000136

I; SIJO -Uj.00O$ C.~OO? .000000013 c.000000020

5.6000 -0.0c000OOS 0.0000C0496 0.00C000010 -0.000000070

5.7000 0.0000"0000 (:.nOO0n4Rt 0.000000002 -C,000000084

5,3000 JXCAnO0000'35 1). ~~O0NO(175 -0.000000005 -C,000000041

5.9000 0.U00000035 -n.000000140 -0.000000006 C.000000014

6.0000 0.OC00000013 -O.nnnrOO?sb -0.000000003 C.000090040

6.1100 -0.ooooooooq -J.()(0000171 0.000000001 C.000000032

6.200 0  -0.1)(000001S - I..00000O007 0.000000003 0.000000007

6.3000 -0.3)00000013 t).n..00C0104 0.000000002 -0.000000014

6.40V0 -o."00000001 0.000000111l 0.000000001 -G.000000019

ý.5O00 0.10000000"? 0.0"0000046 -0.000000001 -c.000000010

6.6000 0.1OCIOC'300 -n.03O0000026 -0.000000001 C.000000002

6,7000 O.Irno00003 -0."20000056 -0.000000001 0.000000009

6, . WX0 -0.00000f)002 -0. C00003C04rA 0.000000000 C.0000000-07

6.900(' -O.0Q'0003004 -0.0000000305 0.0U00000001 C.000000002

7.0000 -O.OC0000003 0).000000021 0.000000001 -C.000000003

7.2000 M.OCOOCOOI 0.000000012 -0.000000000 -C.000000002

7.3n00 0.000000002 -O.C0,0000004 -0.000000003 0.000000000r

7.4000 0."'00000001 -0.00O0000012 -0.0000000i0 C.000000002

7.5'000 -0.000000000 -0).000000009 0.000i,0OOOO 0.000000002

7.6000 -0.000000001 -c;.00000000? 0.000000000 0.000000001

?.7100 -0.000000001 "N.000000004 0.000000000 -C-000000001

7.83c0 -O.000000000 0.000000006 0.000000000 -01000000001

7.Q000 0.0co000000 1.000C'00003 -0.000000000 -0.0000006001

$3.0000 0.3000003000 -0.000000001 -0.000000000 C1000000000

8ýl0010 0.000000000 -3,0000O0O00$ -0.000000000 L.000000000

- r 300 -0.I000000000 -0.0006000001 0.000000000 01000000000

3. 000 -C.0CrO000000 -0x000000002 -0.000000000 0.000000000

b .. '000 -0.30000000O) 0.00000000! 0.00000o000 -0.000000000

R.5000 -O.DOfl00000, 0.000000001 0.00000C000 -CO000000000

8.60010 0.10"0003000 -0.000000001 -0.000000000 C0.000000000

8.6000 0.0009030000 0C.00000000 -0.000000000 -0.000000000

8j.7000 O.300000000 -0.C000000001 -0.000000000 -C.000000000

S,9000 -0.0030000300 -0.000000001 -o.0000000J0 0.000000000

9.0000 -N.000000000 -0.000000000 .000000C000 0.000000000

9.2000o -C. 000000000 0.000000000 0.0r 00eo000 -C0 000000000

9.2000 -0.000000000 010CI0000000 0.0000ý00000 -0.000000000

9.3000 C.000000000 0.000000000 -09000000000 -C9000000000

9.4000 0.000000000 -0.000000000 -0.0000000000 -C.000600000

9.5000 0.000000000 -0. 000000000 -0.000000000 00 OOCO0000O

9.6000 -0.00000 0000 -0.0600600000 -0.00000000c o.0006600000

9.7000 -0.000000000 -0.000000000 0.000000000 0.000000000
9.S000 -0. 000000000 G.0000000030 0.000000000 -0.COOOOOOOO

9.9000 -0.0000000cco 0.000000000 0.000000000 -0.00000000n
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TABLE 6 Continued

X-AXIS MOUL NO,%

PRINICU OUTPUT FORMAT

11"9E x .x0

0l.0~10 '1.0247f.395 8.f99782199 0'.000149184 -6,016498180
6.1000 e.A3p'2 W.051059124 -a6.088658253 -0.010424034
0.2000 t.PP710'131 -a.013631146 -9'.811171211 e.088112243
01.300a Y.U3816V15 *-'.0465a3d#65 -0*0087671'25 0'.006908264
0.4059@ -8090;h17939 -3,439077571 -C.900F19971 0,2090:420
V.S5de2 --e-P'S2(5961 -09309545959 0i,08047949V. 0,0926272761
8,63800 -0.02b834663 V..A1b719445 e*800b82663 -0.691867219
P.7000 -%.~7tj 0,022275673 809001 -0.00361 88987.03800 -!V`~4b 0..)12549691 -9-990122523 -0.902478636
P1903A ?.01215,3879 -o2u50546 -0.800255996 -0.83@172668
1.090q? a.Zej9?ft436 -0.029;34722 -9.999181568 B.Sg1439096U 1.1830 -1.00444-.)138 -3,009OZ4254 -6*902133575 0.0515820591.2900 -e.300o617s -0.68272e371 a.333999362 019606777101.3e02 -40o~iX 9.003.090249 3.W93113573 -0.808339POZ~

U-1,4036 -0.g03?12671 .0*04928619 Oe139151223 -9,99671785'Ijj1.5881' 2.Os.52.710,6 P.99UOP944 -8.893921 71P9 -0 ofig!183583

1.7de3 -;.?0232i539 -8.902399347 -9.3383425,80 0,002296082

r ~1.9910 d0.1A~ -0.906719915 0.9939128487 3,300168285[2:8I912 -. 000147667 0,:8l3601381 9.1098254-14 -0.022059628
2.191 soot."33.93Vg1a12619 -0~9h1170562

2.280I Z1564939795 8.4808714327 -9.853843657 -0.980135313
2.3319' 8,9'8a76741 0.890023474 -1.3999391999' -9*9119027&iI
2,4910 0*00005P430 -0.3934415606 -9.009339991 0,959060611
2.5010 0,i90403530~ -0.0394g56209 -9.90962235 0.896179656
2.691e -0*03003'569 -9.290160359 69396194130 9.39$041661C-. 2,701? P28d~35~ 9.95111571 30*199,e5675 -9.30%0?9239L2.8810 -0.064914304 0.993236637 9.991168833 -0,919#36576
2.9fas 0 .g93e.%7236 O.MI968961 -0,69C~ .98631361
3,.1916 O.120016711 SM0919125P *9.93'A921,63 -1,069091205
3.1911 ,9,12012345 -1.909391436 -9.939009Z22 9.539912105
3,2614 099W00"B~173 -6*668195323 -099199939647 8,1"8l17646
3.321a -2*988B06300 -89.90947934 *.f99"" 819 01609910169
3,09 -feffog:7~55 8,0874 #8617 4*101
3,5#10 -8.Igfig'3595 @.939151454 09018899751 -9,65fe'775

3.'99 8991'?319 .99ff"59 -09.38399045 -9,109I322#2
3.9119 9.132r?Z874 698990081869 -20926493916 0.989019378
3.9919 989880PS1 74 99eI45 *.391l 8,599661912

4.1211 -9* 99M81687 $9.9" 3421 89"09862115 -2090988199
4.2610 -S,8980088S2 SAY991243' 9.68gesWi.P *9*39#I*66

4, M6 64490899 099h"WS .tgo VE303 -*,SIWM14
4091 0.969496"8 -86046 3880 I f.9fUN1479
40 b3s N0666199192 .. 936*4 *,393919t7 10@00"3 6
4.8999 -0.9993"299 0996f083 S.93961f -S9909 8622

4,#94.9"V .mnm f"af I -~"fr
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TABLE 6 Continued

4,9689 -9.9@0 9P?22 0.,000002163 89.g00069047 -0,9000P'0429
5.3630 GOOPON"?93 8.4eoo.02M6 096ea0066013 -0000000'0192
5.109(j 0,0000'414 3  000000090568 -S.OgOO09022 -O.s00PpO4?2
5.20PO 0.8@90.41?46 -0.000008425 -. ,0600100?07 0,~0J9800135
5,31108 00806OW.' 6 -0.699960907 -6.flg0g0g022 9.0669000069
5,4980 9,I830000903 -S.oM6C00496 -S-CM086012 60.08080042

8.601 800606 -. 0606 -a80809309386 doviierSO2g@ 09'01

6.9391 9.080?4 99092660124 -0,00000' 04
7.8908 e.6890O293 -0.303800096 999900968031 -0089@000~19

6.1391 B9.I088 638.?94 "968398958 -3.0090I0020 -0,000090015
6.291@0 8E0~81 P.M0585018 -84601900021 -0o@00000015
6,2.391 -0,08009Me 90.9se60014 -S.0009009023 -0,09800FO15
7.691 6.Cf9t98 0,969006701 -0.09698022F ?*0.80000015

6,49Ia d900 5A2971 106V07 -0.99000 6.01980000 -0.80000015
7.?611 86000*~183 *911889 . 00334 -9.*60199190 -6.0000000Qii
7.3561 a.6P19Wels 3.06a080908 -200906800890S -,eoO
670931 9.0900632276 B8680@123 -,9.09390011 -P0.F90cO1001

6.9101 8.g#ejv~pesO 09.993003124 -3.1199P29614 -0.109008'35

801901 0,06097p?963 -a#g*353e016 -9.99FOO0120 3.398039015s
7.2091 *.0066.AA971 0.9fi@00026 -B.03090031 -0.0000000.5
7.3401 d.0809091084 80.3805064 -0.8098001902 -P.P0se"'o15

If 6.991 8.I80II8897 -09911090961A -4.s8e3'.9023 e6083003015

7.6,1 jlV3.?7 II2991 ,99M

I1fl a06,07 9OM3 999969 -18001
7,61 alspa9-.0900eI.98cl
7,21 18M8 I0I 2 99M V1 -. 00101
8191I00V02 -.P6684 -*69O2 .0001
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one part in 106 for z;mall motions about i.he equilibrium point. This

proves the validity of the nonlinear simulation of the quadruped loco-

motion system as well as that of the linearization scheme.

If7.3 Simulation of Quadruped Gaits

This section describes the simulations of quadruped gaits such as

the crawl, the walk, and the trot. As mentioned in Section 7.2, the non-

linear equations of motion of the quadruped have been programmed into a

digital computer simulation which displays the various gaits on a cathode

r ray tube display system connected to the computer. For producing stable

gaits, the model reference type of approach discussed in Chapter 'I is

used. The ideal kinematic reference model is assumed to walk in a

straight line with constant velocity, placing its feet periodically at

precomputed points a stride length apart along the direction of motion,

namely tha positive x axis.

The kinematic model for each gait is described by the following

parameters:

1) The duty factor - the relative amount of time spent on the

ground by each leg during one locomotion cycle.

2) The relative phase - the amount by which the motion of leg i,

i = 2, 3, 4, lags behind that of leg 1 expressed as a fraction

[ of the time required to complete one locomotion cycle.

3) The stride length - the constant distance by which the body is

translated in one complete locomotive cycle of the gait.

4) The period - time required for one complete locomotive cycle

of the gait.

4N
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5) The initial foot position for leg i the cotrdinate.s

S(xi, Yi, z() of the position of the foot of leg i at the

reference leg, namely leg 1 first touches the supporting sur-

face in any locomotion cycle. These coordinates are measured

in the body fixed cocrdinate system x,y,z with its crigin at

center of gravity of the locomotion system.

6) The desired z coordinate of th, body - the constant height of

~1 the center of gravity of the ideal kinematic model of the

locomotion system above a horizontal plane supporting surface

I on which the reference model walks in a straight line in the

direction of motion with its legs cycling periodically in both

U space and time.

SThe ideal kinematic model for each quadruped gait is specified by

the above parameters.

1 In the computer simulation, simple linear feedback control laws

based on the difference between the actual and desired values of leg

lengths, angles and their time derivatives, are used to obtain stable

gaits. The simulation of the various quadruped gAts is considered in

greater detail below. For each case, a general descip.ion of the gait,

U a list of the kinematic and dynamic parameters used, as well as a photo-

graph of the computer display is given. During any phase of the locomo-

tion cycle, legs which are off the supporting surface are not displayed.

7.3.1 The Quadruped Crawl

This is a slow speed gait during which the quadruped has alterra-

tely either three or four legs on the ground at all times during a loco-

motion cycle. All the phases of this gait are statically stable because

U
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the center of gravk4Y -4f the body is within the support pattern [16]

- at a!l times. Thex.forr. this gait is easily stabilizad. The crawl gait

is thus well suited for low speed locomotion, . preferred by natural

quadripeds as well as animals with more thar, four legs for low speed

terrestrial locomotion.

Figure 14 is a photograph of the computer simulation display out-

r [ put of the quadruped wt.th all its four legs on the ground at the begin-

ning of its crawl gait cycle. Table I lists parameters for the crawl.

7.3.2 The Quadruped Walk

This is a faster gait during which the quadruped employs alter-

nately three and two legs for its support. During the fraction of the

locomotion cycle when there are only two legs on the supporting surface,

the quadruped is statically unstable. The parameters used for the

simulation of this gait are listed in Table 8, and a photograph of the

• [ quadruped at the beginning of its locomotion cycle while performing the

walk is shown in Figure 15.

7.3.3 The Quadruped Trot

This is a higher speed gait that quadrupeds employ. While

trotting, the quadruped uses alternately diagonally opposite pairs of

S[ legs to support itself. Therefore, this gait is characterized by the

fact that all its phases are statically umcsabla. Dynamic stability of

the quadruped during a trot gait is more difficult because It is nece-

ssary to incorporate feedback terms proportional to the boad vrerxie-

tional velocity normal to the nominal directinn of motion. Thus terms

proportional to YE and YE were needed to stabilize this gait.

Table 9 lists the parametsrs used for the simulation of this
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SFigure 14. The Quadruped Crawl.

rip

Figure 15. The Quadruped Walk.

iii
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gait, while Figure 16 shows the computer generated display of the

quadruped simulation performing the trot. Front Figure 16, one can aee

that the quadruped has legs 1 and 4 on the ground, while legs 2 and 3

which are lefted off the supporting surface are not displayed. Also

it is apparent that the trotting quadruped resembles an inverted

pendulum system as far as its diagonally opposite support pattern is

concerned.

In the trot gaits described by Muybridge [ 71, there are phases

during which the animal lifts all its four feet off the grcund in

between the times when it has diagonally opposite legs on the ground,

But in the comlptuter simulation, the quadruped is assumed to shift its

support from one pair of diagonally opposite legs to another instanta-

neously. This is indicated by the foot duty cycle which is seen to be

0.5 tor all the legs (seE Table 7).

7.4 The Inverted Pendulum System Simulation

The inverted pendulum sy&tem described earlier was programmed

into a digital computer simulation. A photograph of the computer display

of this system is shown in Figure 17. Table 10 gives the values of the

parameters used for the inverted pendulum including a set of stabilizing

control constants which were obtained using the Routh-Hurwitz algorithms

derived for this system in Chapter VI. The inverted pendulum system with

the pivot at the center of gravity of the body, that is, with r - 0 is

easily stabilized. However, the case with r # 0 is harder to stabilize.

Figure 18 shows the transient response of the inverted pendulum system

consisting of a mass pivoted at a distance r below its center of gravity,

and supported on a massiess leg of constant length 1. A simple linear

11
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Figure 16. The Quadruped Trot.

Fg.. An

4 Figure 16. ThIne Qarted PTdromSyte.
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TABLE 10

ParaMezera Used fer the Simulation of the SInverted Perndulum System

iI aXpYUThu ?U LU4 S1ST99

4ASS, INERTIALEG LEN41HALENGI XI, CALCINC. PaINTINC. ENDTIE, CRI11NC

5.0 15.a 310 1.500 0.010 011000 20.0 -. 0.30

COTROL CONSTANS

KI K2K K4

1#41'1I.L STT VECTOR

-?.JS.0.000 0~6 .80069.56

TIM STA VECTOR TOROUE

x2 I3 X4

II 5,31 .a, 1 @.88784 6.163142 -.•,28387 220.283184

2.1.�.�6�22671 -Z.064618 3,735538 -j.S37751 23,182770

2.22 :.079141 .6.144367 3.32552 4.471196 110.948326-:.•.869 •163477 -. a.63435 0,0T7660? 74.102831

2.32 3.Z5969? -0,19686b -Z.133265 2,183397 28.754264

J.J68134 -,,131W13 -- 3.47922 6.,6738 19.086185Z,: Z,a66659 -3,128619 9.006164 O.SE1676 .•71

9. Z .Zo6726,ý -a.129053 - a majiS2 6.69046 3S.199021

0:7Z ,6.'1.678 .36 9 •39 45361 33.995728

a. 9 2,a27bri 0.12663 1585...0 396 0.064966 2I.351S61

a,9? .?362653 -9,122352 - 1,299 216.7A35222 2a, U&:3 :2 -1136146 2.63S494 i,068916 .77266

s , .5 3 .1 "02136676 -. ,037.99 7 6,7161 26.22351

1,22 Z.Z5114? -.9995U-a .039546 6,.736121 24.629467

1,Z aZ473a•42a'9188S .,341956 8,676458 22.761114

2,43 2,;4277 -a.863055Z .- ,43696 0,61626 29,608661

Z.13 5.449317• •,17577 -3,a44399 6,883393 16.42201I.68 .4,34957 
ad567192 -6.-044466 0.084933 16-2.7668

1.74 .J294.t a.1g27g4 .,.244•63 0.•83625 14.146939

1"R a,025*I4 -4t53.449 .0.a6356i a0,62950 12.420236

119Z a020771 • •.Z422.7 -. ,042628 ,0:161 6 9.943266

2.14 a.M514 -Z.a264S6 -5.839736 6.876319 5.9.6156

3.'" -a,"38 3 5 6814a .631467 6.072993 4.982926

-2.gJ.a4944 -,-1834 :.33033 9.69226 23193623

4Z a.u173-4.935315 P.33572 '.68 9,24129 ,• -. g1765 0.,01174 -,0.31169 :,8618639 -0.932266

21 
-2.374421

P.6J :3,V8417• Z.aa7a4 -2.026645 6.655931 2342

3.7 - 3. 7411 2.312355 -Z,?26030 3.135145 -3.692132

2.70 .g.• 9961 0.417229 -0.023356 0.046620 -4.58 12752

2, : -#012161 V,891556 0.26 0-840917 -b945 7

, : 2.,214091 0,025!71 .0:17942 Z,'357e -6,86•

3.1t 3.9.15751 a.025114 -•8115255 a.503694 -7.666763

-,6•.8,01145 l.631536 -.8.812613 9.025650 -8,335097

3.31 -2,915275 0.1335846 -4.e~1638 IJ,629130 -S.577$

3.7 aE179 a,37247 -. 5,95164 l$811382 -9.595263

3.62 .il219 .a37965 -3.118-2994 96687619 9761

3,7Z -2.82337S 9.a39459 -8i,191178 ;,;029290 -9.870808

3.• -B.W3003 110938554 2*Z2?123 -. 82,951 -9.854863

3:992 -Z.j2JI4- a ,Z36274 O-OP3033 -9,294518 -9.746792-

4.J.' Z.Z19751 aa3766a 6.064723 0.03•7?66 -9,504355

4,10 -. 0.19214 e.936731 e.9262.06 -8-e11747 
-9,295412

4.24 4.01g8515 0,43S521 Z.V3754? -03013393 -6.949025
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TABLE 10 Continued

S1wz Xl X2 13 X4 TO9UE

4.30 -94917771 0,034063 010067 0,17216 ~ ~ 534

4.4.1 -J.016777 O,032387 .0089722 -8.1t?,l?36 -8.1894751

.50 -6.9157s2 4.330C26 A8.10562 -9.8919A7 -7.626378

4,61 -9.314673 3,322510 0.61124Z -8.210832 -7,075922

4.73 -a.413518 0.026369 a. Q811.6 OP, 292 -6.5I1747

4.03 -3,312321 3.024133 0.012145 -3t•22744 -5.936159

4.92 -Z.911494 Z.,ja183A 0.012380 -0.023265 -51341153

5.32 -8,889S7? 8.d19485 3.012482 -a,023568 -4.730370

5.10 -2,828632 0.317124 1.612460 -8.923609 -4.134024

5.2? -a,207361 atiZI'770 0.#12322 -0,323425 -3.533933

5.37 -Z.096141 a.812446 a.912076 -1,023934 -2,943342

5.48 -3.904949 0.010065 Z.011138 -0,322435 -2.367190
S.68 -2.,8379,4%34 07960 0.011532 -3.••06 2 12.8964Z

5.60 -a.211259 ;P.a283942 3.93229 -0#3820806 -i 2.53

5.70 -SO1636 ,1063803 -. 10?42 -. 8*19776 -0.766603

7*~ .9~9 .3018832 -0.099 90168 .86331 02.6957GV

S6.01 3,$61146 -a0ggZ595 9,088244 -0,2141•84 8.157579b

6.12 Z.081934 -8•.,13.5 -a.@97511 -,e814714 6,955$64
76.2' 0.33 5 -•.89-i04536 a.32686a -0.013344 1.213

6.22 0,90236 8 8 e 26  090,4j,584 .2931936

76.39 .8.3246 -0.495795 0.695198 -1.911668 1.166371S6*4V 0.693847 -8,666999 9.665235 :::919424 1.376463

6.5? 1.04333 -0.-84t9O 0.0114476 98 8964 2.109681

8.62 0.034143 -4,a7 .?-7 0.003129 -0,07562 2.816441

6.7z a.83537 -2,89393 . 9013985 -0,§6176 2.467192
.6.83 3,28344 -r,.009942 9-502296 -5,3,4962 2.593990

6,9P 5.428539 -,1359,8 -0.41162F30.68662 1.686387
Sa.d ,.11566216. .,3•048 .0038976 -0.192279 2.747978

?:71• .1051736 -o. 610817 0,028369 -5.021506 2.778879

S;.8? et.38144~ -4.013057 -0.000398 -. 8063705 2.781439

•7.3 98,0569q -0,al3828 -0.896122 3.096117 2.757654

7.43 0,8156M -2.031671 -0.011203 P.e8959 2.719632

S5.1 3,035459 -Z.31!432 -•,091638 9.092919 3.239547

9.23 0.035275 -2.-41112 -0.992?7 a,923577 29.182933

7,7.-? Z.605055 -3-809719 -.0.02366 ,0i94256 2,442153-

9.82 -33256 3-4.O264 -0.002664 6,854346 2.319362

7.95 8.90S0484 -- A3687$3 -0.082913 0.05349 2.183513

9.6z Z.0042>2 -O.W197 -2.031967 ,.805765 2.P36814
9,9 .5,8039A7 .,.173 -0.103277 0,06098 -. 881416
8• .2? Z.063564 -?e,;698a -0.003395 0.086349 1.719397

3.38. Z*303i24 -,.9163 -0,636 8472 2.086523 1.5527576,4a 3,,e87S -0.305676 -8.193512 91.096623 1,383387

6.5.k 3,082523 -a-.L5013 -0.003515 B.806634 1.213808

-8,6J O.ZJ2173 07.304J49 -. 6.03486 0.00662a 1.043499

I.v 24016 -2.3118 .2.3691 -0.813425 0,906526 &.876088

A.3? a.28138 -2.:32417 -0.803224 904.6182 lg.6517332

e•.13 2,020543 -3-80123: -O.Btk2933 2.905*135 9.255817

;;9.20 O,908259 -OOilOW °Z.OP2762 .00•5144 0.118290

9.32 -a.1950aO -0*0001,5 °O1.00?576 13#065303 -0.31055'
9.42 -Z.M256 3.910319 -3.310380 900E4638 -0.170125

9.5? -0.001484 3,039764 -OM2175 60,184257 -0.239255

9.64 -a.aO691 J.Pall7l -J.002965 d0113662 -0.3397$6

9,71 -. OZZ8•77 i.aOI536 -2.911751 B.a63459 -0.429160

9.9a -0.001184 0*202147 -0,251321 0,992646 -10.5766,38

-;U3S0879 00118t,023 -16$7
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feedback control law is used for the stabilization of this system,

i7.5 'Ehe Quadruped Pace

This is a high speed gait that some animals euploy. It is

I faster than the trot. During the pace, the animal uses two legs on the

same side to support itself. This gait has no statically stable phases

in its locomotion cycle. Dynamic stability is achieved by alternate

fall and recovery using the two legs on the same side. Muybridge 1 7]

has showm that the pacing horse has all its feet off the ground for a

small fraction of the locomotion cycle in between the times the horse

switches its supporting legs.

SThe pace is more difficult to stabilize than the trot. Since the

system looks like an inverted pendulum in a direction perpendicular to

the direction of motion, the following correspondence was established

f with the inverted pendulum system Routh-Hurwitz analysis.

Stabilizing control constants were computed using the dynamic

parameters of the quadruped in the Routh-Hurwitz algorithms for the

inverted ?endulum system. Then, one half of the values of the control

Sconstants K1 through K4 computed for the inverted pendulum system were

used in the feedback control law for the lateral centering torque T.i,

given by equation (6-114). Table 11 shows the parameters used for the

simulation of the quadruped pace. For this particular gait, the

dimensions of the body were 5' x 2' x 2'.

I Figure 19 shows a photograph of the quadruped pace that was dis-

i played by the comvuter simulation. For display purposes the two legs

that are on the ground have been shown at the center of the center of

the body. Use of the inverted pendulum system Routh-Hurwitz analysis
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Figure 19. The Quadruped Pace.

L Figure 20. A Type of Biped Walk.
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for the lateral control of the quadruped locomotion system produced a

stable pace.

7.6 A Type of Biped Walk

There are basically two types of mechanisms that bipeds employ

for stabilization during walking. One of them is body torquing for

lateral control, and the other is foot placement for longitudinal

control in the direction of motion. As an example, body torquing is

by tight rope walkers as a stabilization mechanism. They use

long poles to effectively increase their moment of inertia during their

walk on the tight rope. Foot placement is important for example, for a

stilt walker who maintains stability by alternate fall and recovery by

placing the stilts in the right position.

In this research only the body torquing mechanism has been inves-

tigated in the simulation of a type of biped walk. The idealized biped

moves with a constant velocity in the direction of mk.ion over a

horizontal supporting surface.

Table 12 shows a complete set of input data used for the biped

walk. Figure 20 is a photograph of the cathode ray tube display of the

biped gait simulated during the course of this research. For this

simulation the following assumption was made. Two parallel massless

legs supporting the body with the distance of the body width separating

them as in the quadruped pace display (see Figure 19), was equivalent to

support by one leg with a foot whose length was equal to the width of

the body. The result is the display of Figure 20 in which the

supporting leg is shown at the center of the body for convenience and

the leg that is in the air is not shown. Stabilizing control constants
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A for the biped walk were once again obtained by the application of the

Rou.th-Iiurwitz algorithm fotr the invrerted pendulum system for the

lateral control of this locomotion system using a feedback control law

simi~lar to that described in the previous section for the quadruped

- pace.

7.7 Summary

This chapter has described the experimental results ob~tained

from digital computer simulations of the idealized locomotion systems

considered in this dissertation.

In Section 7.2 the results of vibra~tional analysis on the

4 quadruped locomotion system were given and the validity of the non-

linear simulation as well as that of the Iknearization techniques 11sed

shown by the correspond~ace between their outputs to one part ia 0

Then the actual parameters used, and the computer generated displays of

* ! the various quadruped gaits such as the crawl, the walk and the trot

were described. Section 7.4 outlinect the parameters used to obtaln a

stable inverted pendulum cystem. The application of inverted pendulum

I system stability criteria for the simulation of a stable quadruped pace

gait was covered in Section 7.5. Finally, the simulation of a type of

biped walk using the body torqvuing mechanism for stability was discussed

in Section 7.6.
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CHAPTER VIII

CONCLUSIONS AND FURTHER TOPICS FOR RESEARCH

8.1 Results and Contributions of this Dissertation

The following results and contributions have been made to the

iatudy of legged loco-notion systems:

1) The techniques of linearization and modal analysis have been

applied for the first time to the nonlineai. equations of

motion of idealized dyn'ic models of legged locomotion

systems. From this, a design tool has been obtained for the

determination of stabilizing control constants for ,he

[ postural -ontzol of these systems. In addition, these achni-

ques have provided a method for determining the validity of

the nonlinear equations of motion describing the dynamics of

legged locemotion systems.

2) The use of the above techniques on the nonlinear equations of

motion of the legged locomotion system developed by Fraak and

rNcGhee [47] has shown that some of their assumptions and

certain equations were incor:ect. The appropriate uodifica-

Iitions were made, and for the first time a completely authen-

ticated dynamic simulation of a massless leg quadruped

locomotion system has been obtained.

138
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3) A nonlineat simulation of an inverted pendulum system with

the mass pivoted below its center of gravity on a m.assless

leg of constant length, supported by a " fixed " foot h;ýs

been developed. This simulation has been used to show that

such a system can be stabilized for small motions about its

equilibrium position by torquing the mass using a simple

linear feedback control law.

1�4) Stability criteria for the controllability of both the

quadruped locomotion system, and the inverted pendulum system

S] have been established.

5) Four dynamically stable gaits, namely, the crawl, the walk,

Sthe trot, and the pace have beer- simulated for the quadruped

locomotion system.

6) A type of biped walk using the body torquing mechanism for

Sstability has been simulated. This proves that the

techniques of inverted pendulti4 stabilization can be applied

I for the lateral stability of a simple biped model consisting

of a mass supported on two massiess legs.

8.2 Topics for Further Research

Some of the areas where more work is needed irsclude:

1) Development of the equations of motion of legged locomotion

systems taking into account leg mass.

S2) Stability and control of the simulation of a biped model

consisting of a body supported by massless legs and using bcthi

I the body torquing as well as the foot placement mechanisms.

I
I

'n, .•
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3) The system dynamics incorporated in the simulations obtained

during the course of this research have assrued that the

models had fixed steide lengths and gait periods, and were

travelling on level ground. This work needs to be extende(,

to simulations of leggad locomotion systems producing stable

locomotion over uneven terrain using variable stride lengthe

and gait periods.

1 4) The application of pole assignment techniques [701 to the

liisearized equatiouw of motion of legged locomotion systems

L for obtaining desired transient response.

"5) Digital computer simulations of kinematic modals of hunan

gait [33] with applications to the study of pathological

j |gaits [34]. Such simulations are also useful as a computer

aided instructional tool for demonstrating normal and

"pathological gaits to medical personnel.

8. 3 Conclusions

In a real life situation, human and animal locomotion is a com-plexiii
& Lprocess dependent upon many factors such as: 1) visual inputs, 2) pro-

prioreceptive--sensing-of muscle dynamics, 3) angular acceleration feedback

from the vestibular system, etc. Simulations which include all these

different aspects of system dynamics are difficult, if n-t impossible to

achieve. However, this research has produced idealized dynamic models of

legged locometion .systems. These models have simulated marching " type

of quadruped and biped gaits using a " model reference type of control

system. The dynamic theory of legged locomotion systems needs extensive

further development.



The next step is to extend the work to the simulation of loco-

motion systems which take into such factors as leg mass, the nature of

the terrain, variable foot placement, etc. Such systems would probably

need adaptive controllers as well as inertial guidance systems for their

stability because the locomotion system would have to change its gait

automatically to take care of variations in the terrain.

if leg mass is included, the equations of motion -.f a legged

locomotion system become quite complicated. For example, if a biped

is modeled as a rigid body with two arms, and two legs, with each limb

having a two degree of freedom hip (shoulder) joint, and a single degree

of freedom knee (elbow) joint, then this model has eighteen degrees of

freedom, and is therefore described by a 36th order differential equation.

The type of biped gait simulated in this research has used only

the body torquing mechanism for its stability. A more comprehensiveVal
treatment of biped dynamics should include both the body torquing and the

foot placement (base motion) mechain-isms for stability in the lateral

as well as the longitudinal directions respectively.

-~ Even though legged locomotion syetems are inherently very complex,

this research has shc-wn that it is possible to construct a mathematical

Sbasis for their system dynamics by the application cf the laws of

mechanics, modern control theory, and computer simulation.

*1
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[ iAPPENDIX

COMPUTER PROGRAMS WITH EXPLANATION

A.1 introduction

[This appendix lists the computer programs used in the course of

this research along with an explanation coverinR both the various

symbols used as well as a description of Che program, Section A.2 dis-

rcusses the main program for the quadruped gaits. Thi4 program is used

to simulate the quadruped crawl, the walk, and the trot gaits. Section

[ • A. 3 discusses the modification of the main quadruped program for use in

the vibrational analysis of the quadruped iocomotion system.

: LSection A.4 covers the computer programs used for obtaining the

rlinear system response of the quadruped locomotion system. This section

lists the main program for obtaining the elgenvalues and eigenvectors of

: • the real non-symmetric modal matrices of the linearized quadruped locomo-

tion system, as well as the subroutine LINEAR used to compute its linear

system response,

Section A.5 describes the program used for the simulation of the

inverted pendultm, system considered in the dissertation. It also inclu-
Sdes a listing of the algorithm used for computing the stabilizing control

constants ,ming the Routh-Hur..itz analysis.

Finally, Section A.6 describes the modifications made to the main

walking program of Seciton A.2 to simulate the quadruped pace as well as

a type of biped walk,
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A.2 Computer Program of the Quadruped Locomotion System

This program is used to simulate the follcwing quadruped gaits:

1) the crawl, 2) the walk, and 3) the trot. The main program listed in

Figure 21 should be used with the Macro subroutine PILC given by Figure

S22 for use on the PDP-9 computer of the Digital Equipment Corporation.

For use with any other digital computer, the main program should

be used with the proper display subroutine after making the appropriate

changes in subroutine PICTUR to modify it to juit the particular display

package used. This program uses the Euler Predictor-Corrector method of

integration.

The following is a partial listliag of the symbols used in this

program:

A(4) = a the actual forward angle of the leg at the hip

AC(4) - a the desired forward angle of the leg at the hip

B(4) 8 the actual lateral angle subtended at the hip by the leg

l BETA(4) - the foot duty cycle, percentage of the cycle the foot is on
the ground

CPH - cosine

CT - fraction of the present period which has elapsed

CTH - cosine 8

DA(4) - derivative of angle a

DAC(4) - time derivative of the desired angle ac

DB(4) = derivative of angle 0

SDL(4) - time derivative of the leg length t

DLC(4) - time derivative of the desired leg length I
0

DOTX = stride/period - desired x-directed velocity

- DT =differential tine iacrement for integratiun
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DTP - time between printouts

DX(12) - time derivative of the state vector x

SF(3) - force vector f applied to the bo-y

FZP(4) force in the z direction due to each leg

[G(4) - PHI(4) + BETA(4) - 1.0 - instant when foot is lifted in
a cycle. If G is greater than zero, foot is lifted in next
cycle. If G is less than zero, then the foot is lifted in
this cycle.

GA"MA(4) = position of the foot when it first touches the ground rela-[ tive to the body in stride normalized coordinates

H(3,4) - matrix of hip positions

I,J - general indexing variables

M(4) = indicator of the foot position: M - I (on ground), M - 0

(off ground)

PER - period of the walking cycle

I" PHI(4) - +i#phase of the foot action relative to the first foot action

jSTH -sine0

STD - length of the stride

TO(3) = torque vector T applied to the body

TIME = total elapsed time of the gait

"TM(4) - motor torque applied at the hip (T )

STMAX - maximun time of the gait

TP = next scheduled printing time

STS(4) lateral torque Ts at the hip

T1(3,3) - the matrix of transformation T1

ST2(3,3) - the matrix of transformation T2

5 T3T(3,3) = the transposed matrix of transformation TT

X(12) - the body state vector x

XF(4) - the next position of the foot in ground coordinates
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XI(3) - moment of inertia vector - [Ixx Iyy, I zzT

XK(10) -control constants K1 through K10

XL(4) = leg lengths i

XLC(4) - magnitude of the leg langth projected on the x-z plane

XMASS - mass of the body

XS(12) - previous value of the state vector .. saved for tiie
computation of x ising the Eu-ler Predictor-Corrector method
of integration

YF(4) - y coordinate of the foot

ZR - z coordinate of the body

The following symbols are used in subroutine FANDK:

CA - cosin-3 a

CB - cosine B

-IX,FPY,FPZ - forces applied to the body by leg i at the hip

FX,FY,FZ - total leg force in body coordinates

SA - sine a

SB - sine 0

TXTY,TZ - torque applied to the body by the legs

SXM,YM4,ZM - moments due to forces applied at the hip sockets

The following symbols are used with subroutine MODEL:

'I CG - fraction of the present stride which has been executed

CT - fraction of present cycle which has elapsed

INT = number of elapsed periods of gait cycle

XDNF(4) - next position of the feet in body coordinate system

XNF(4) - next position of ti-e feet in normalized body coordinates

The following symbols are used with subroutine LEG:

CPS cosine i

!'



C FORTRAN,
C THIS PROGRAM IS FOR THE SIMULATION OF THE QUADRUPED LOCOMOTION
C SYSTEM GAITS, THIS PROGRAM SHOULD BE USED WITH THE MACRO SUB-

SROUTINE PIC FOR DISPLAY PURPOSES. TME QUADRUPED GAITS SIMULATED
C BY THIS PROGRAM ARCS THE CRAWL& THE WALK AND THE TROT.
C THIS PROGRAM CAN BE USED WITH THE PROPER DISPLAY SUBROUTINES
C ON ANY DIGITAL COMPUTER,I
CIc C PSEUDO-DIMENSIONED VARIABLES (E.G.: X43) a Xle x2o W 3
C IBETA(4)o 0(3) OXL(3)v IP(3)o TM*) TI(3*3), T2(3#3)
C 2T3T(3,3). XB(31* XI(3h KY(S

LOGICAL LOOP. "M(4 HIAONGe WOF
DI WENSION Al~e AC(4) l(4) DA(4) DAC(4) 01144)o 01.14
IOLC(4)s DXtI2), FK(4)* FY14). 75(4). FIP(4)t 6(4). GANMA(4)o
2)41(4) W2(4)s H3(4)s PH~t4) THM(4 11(4), TK(4)o
3TY(4), TIM4) K(It) XF(4)t XK(19), KLM4) XL,^(4),
4XM(4)* XS(1212 YF M4) YM(4), IM(4) [ENPUT40t) EXECUTISS).
STITLE(4) IHX(4)8 INV($)# IFK(4)o 171y(4)
COMMON DXI. DXI* OX). OK4o DXS. OX6. OX?# OXO. DX9. DXII.

1X.DK 12. FXI. Me2 FK3* FX4# FYI# FY2, 713. FY4. File
2I142, 713. Me4 GIs G2. 63. 64. XI@i TX2. INS, TX4# 111.
3TY2# TYS, TY4# Tile 712* T13, 114. KNI. Me2
4KM3. KMe YMIP YMI.o YM3. YN%.It 114. Me1 14.1144

COMMON /INPUT/ SCYAI, SETA2. SEVA3* IETA4# GANMA.
1PNI1. P312. ON13o P1414o HI. 142o N3*3 YF. $TD. PER# IR. OT.
XTMAls XI. X2# Xt. X41o X5. KS. K?. KS. X9* WeI
3XII. XII. XMAS. Mei X12o XI). XKIP XXI. XX). X94o XKKS
4XKKS XX?, XKI. ICKI. DTp. 0TP70. 1*l TII2. 1113. 1121 . 122#
51123. 7131. 7133. 7133P COP XF* No IADR* WOF.
6TITLEIr TILF2# TITLOP,¶ITLE4.XKII
C1"Om II4NDISP/ IHXI. INX2. 11HX 0 IHX49 IHYI. 141 IHY SIN~

1IH'r4 *HYS. IHY0YS IHY?.148
EQUIVALENCE (INK(I).IHXI)# (INY(1)IHYI)
EQUIVAL.ENCE (OXII),OXI)o (FKCI):FX1)*

2(PHTIM1)PHI1)o (TXCI)CyXl)o (YY(1)TYI)f

DA1IA HfZADNG/qFALSE*./.BLANKS/5H /PXONE/1I.3
C
C *.FIRST HALF OF MAIN PROGRAM00
C

1og IF (HADNG) GD TO 113
HEADNG a .TRUE,

l1e WRITE(4#6I0)
ZCALL ACCEPT (4# K)
IF (10 i7l,246o12l

123 DO 1960 L a I# K
CALL ACCEPT (4# It DEN)
IF (1) 159, 159o 139

130 IF (I - 61) 140P 169o 150
143 CENPUT (1) a DEN
153 CONTINUE

9O TO 113
169 READ (4080~) TITLE

GO TO 110

Figure 21. The Main Quadruped Nonlinear Gait Program



17 rIF (K 2) 239; 269. 186 147
180 00 198 1 8 Is 57* 4

CALL ACCEPT (5. BETAI. BETA2, 9ETA3@ BETA4)
EENPUT(I) a BETA1
EENPUT(I*1) a BETA2
EENPUT(I+2) a rTkA3

190 EENPUT(1*3) 8 S.IA4
TITLE2 9 BLANCS
TITLE2 a BLANKS
TITLE3 * BLANKS
TITLE4 8 BLANKS
Go TO 110

253 00 211 1 a 1* 63

216 EXECUTMI) z EENPuT(I)
00 223 1 a 1# 3
00 229 L a 1. 4
143401 eL +8J334L I•L9K 83 *L I* "9

S22 EXECUT(J) * EENPUT(K)
WRITE (6#571) TITLE* EXECUT
GO TO 11l

236 WRITE (7#550) (SENPUT(I)o I I s. 66)
GO TO 11%

246 WRITE (4#'61i)
CALL ACCEPT(4,XK16)
-O 256 I v 1 66

256 EXECUT(I) U tENPUT(I)
00 260 1 0 1 3
00 26k L a 1 4SJa4o I *L*S
K1 4 L # G*=., ~K 83 o . 1; * 9

263 EXECUT(J) E £ENPUT(K)
WRITE(6#970) TITLE# EXECUT, BLANKS& TITLEIF (OTC) 2794999#289

270 NOf 8 ,FALSE,:• • OTC a -OTC

STO 296-• 280 WOF a ,'rlUE.
.v 99 CONT INUE

[ 61 a PHI? * BETA1 - 1."••G2 a PH12 * BETA2 - to

G3 a PH13 * BETA3 - 1.
G4 a P914 * @ETA4 - 1.
TP a -".,16311 TO a -*•,0891
TIMlE a 6,

OOTx 7 STO / PER
LOOP 8 *TRUE,

C
C **0 SUBROUTINE 'HODEL' *..
C
316 NT • INT(TIHC / PER)

FNT a FLOAT (NT)
CT • (TIME w FNT * PER) / PER
CC a (FNT * CT) * STD
00 399 I 1.4
IF (G(.)) 316. 318.320

Fiure 21. Continued
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310 IFk oC - P-.- )) 330p 340s 34- 148

32@ IF (CT - PI41(f)) 360, 350• 350
330 MCI) J ,FALSE,XNF. C AMMA(l) •STO

GO TO 360P
3401 IF' (CT - G(I) 1#9~) 356s. 359v 3311
350l "M] # TRUE0

XN7• (GAHM ) + PHI) - CT) ; STO

GO TO0 380)

3601 IF (CT - G(I)) 370, 379# 331
371 MCI) s ,TRUE.

XNF 9 (GANMA(I) + PbI(I) - CT - 1.1) * STO
386 XF(I) a XNF * CG

OEN XNF - HI(1)S~~AC(V} & A1TAN(CEN/A.R)
XLC(I) a SORT(D£ENODEN * Z•R*1R)

DAC(i) DOTX 0 ER / CXLCC()©XLC(I))
391 *LC( a -DOTX OEN XLCi)

c 0*0 SUBlROUTINE ILEGI 0*0
C

CTH a COS(X7)
STH a SlN(X7)
CPH a COS(xa)
SPN a SIN(XS)

SPS a SIN(-9)
Till a CYN 0 CPS
T112 s CTY * SPS
T113 a -STH
T121 v CPS * STH * SPH - SPS * CPH
T122 x CPS # CP;4 * SPS * SPH 0 STH
7123 a CTH * SPH
T131 8 SPS * SPN * STN ' CPS * CPR
T132 a SPS & SYT * CPM , CPS 0 $PH
T133 a CPI * CTH
7211 a #13
T212 * CPOT213 a -SPH

•[T221 • 1961

T222 a STH * SPH ý CTH

T223 a STH * CPH / CTH
T231 a @1,
T232 a SPH / CTN
T233 a CPH / CTH
DX7 a T211 • XlI * T212 * XII * T213 0 X12
OX8 a T221 * XlI * T222 # Xii * 1223 # X12
OX9 a 1231 * X10 * T232 * XlI 4 T233 * X12
DO 401 1 s 1# 4
XTl a XF(I) - X1
XT2 a YF(I) - X2
XT3 s -X3
XB1 a 4T1 * Till * XT2 # T112 * XT3 a T113
X92 a Xl * 1T121 * X?2 * T122 4 XT3 * T123
X83 a XT1 * T131 * XT2 9 T132 * XT3 s T133
D1 a xg1 - mI(I)
02 x XB2 - W2(1)

Fiugre 21. Continued



BIB

03:x X83 H 13(1)14
XL(I) a SORT(D1.o1 *cD2402 D*0303)14
AMI x ATAN(D1/DJ)
DEN s 02/XLCI)
DEN a DEN/SORT(1. -DEN*DEN)

9(1) 8 -ATANZDEN)j XLI x (-0X7eSTHOCPS-DX9,Tl12)*XTj (OX9#f11±-DX7#STaSPS)
1*XT2 - OX7*CTH.XT3 - X4
OXL2 a (OX7*T1XIOSPH*DXBOTI13.DX9.T122)OXTI # (DX7.1T112*SPIN.DXe.T132.OX9.yI12±,XT

2 - CDX7*STH*SPH-DXB#TI33)*J 2XT3 -X5

OXL3 *(DX7eTI11oClPH-oXa.T±2l-oX9.T132).Xyl * (DX7.T112*CP,4"XG#T122+DX9*T13j)0XT2 - (DX79STH0CPH#DX80y123)0XT3 - X6DiL) 8 (OXLl * DI 0 DXL2 0 02 + L3 * 03OW XLMf
DEN a D1*D1 + 03*03

400 D9(I a (OLIa) *02 - XLUI) * DXL2) / (XLCI) *SORT(OEN))
D A I D j 1 * 0 3 D L l E

C SUBROUTINE OCONTRL#
00 420 1 a is 4
IF (M(I) GO To 410
TII(I) a 3,
TSMf s Do

413 TmV )8XKPcI)-Cl) X:201OAu)oAC(), + XI(7*X4
TS(I) a XK3*8(I) + XK4'.OBU1 'o XK8*X2 + XK90X5FIP:) x K*Xa)-L~) XK6.(DL(1).OLC(l)) XlII

420 CONTINUE

C. SUBROUTINE 'VANOH'

Do 433 1 a Is 4
CA £ COS(AI))

ff SA a SIN(A(I))
CS a COMM8))J;~l! TS:N B); CA

TM a -TS(I) *SA

T3T22 a CA
T3TJ2 9 -SB S
T3Tl32 aC * SA

T3T32 a SB # CA
T3T33 a CO # CA
FPX a TIMl) /(XL(I) *CB)
FPY a -TSMI XLII)
F P? a FlP(1)
FxI!) a T3'i11 F PX + T3TI2 *FPY *T3TI3 *PFY(I) 3T3T21 *FPX *T3T22 *FPY* T3T23 F PZ
Fill) 3T3T31 *FPu * 3T32 *FPy *T3T33 *FPiSXM(I a 142(1) *FICl) - 143(1) * FY11)

3 Figure 21. Continued



TYh() a K3cI) * FX(M) - HIM) * FI() 150
430 ZM(E) a HIM(1) FY(D) - H2(1) 0 FX*(I)

F1' FXI * FX2 * FX3 * FX4
F2 F Y Fy2 + FY3 * FY4
F3 Fil1 * F2* F23. * 14
TT1 • TXI * TX2 * TX3 * TX4 * XIII * XM12 * XM3 * Xm4
T2 a TY1 * TY2 * TY3 * TY4, + YM1 + YM2 # YM3 o YN4
T3 TýIl * T12 * T13 * T24 + EMI * 1"2 * 1PI3 * IN4

C
C *e* SUBIRtAI7NE VXOOTI o*0
C

OX4 a X5 * X12 - X6 * Y1L 4 v1 / XMAS - 32.2 & STH
OX5 a X6 o 1X - X4 o X12 * F2 XMAS * 32.2 * CTH * SPH
0X6 4 X4 t X11 - X5 0 XUS * F3 I XMAS * 32.2 0 CTM 0 CPH
X1i S (s(X12 - X13) * X1i 0 X12 * T1) . XtI
DXII 2 ((X13 - XI1) * XlU * X12 # TV) X12DX12 2 f(.•ti - X12) * X14 * XIIl * T3) / X13
OXfl * Till1 X4 + T121 v' X5 + T131 • X6

DX2 a '112 * x4 * T122 * X9 * 1132 * X6
OX3 a T711! 0 X4 * T123 0 X5 * T133 • X6

C --to SECONO 4; OF MAIN PROGRAM 0
C

IF (LOOP) GO TO 529
LOOP a ,TRUEi
00 446 1 s 1; 12S441 XL ) s (XS{I) * 2 X(I) • OT * X(D)) / 2#

1; (TIME " TO) 492a 459, 450
45 Ta •TO *DTD
C
C o*o SUBROUTINE IPICTURf

x"Cc v X1 CG
• 00 461 1It•1 4
•m Xx a Till• Hitt) * %21 * P2(t) * T131 * t3(t) *. XMCG

•i~Y 9!y T112 •HfIM + T122 * N2(I) * T132 9 43(t) * X2
ZZ a T113 •Hitt) • T123 9 N2(1) * T133 9 NM|I) # X3.

; IHX(j) 8 INTt41,1 * XX* 32*1 * YY) # 265
INY(M 2 T{NT(-1299 * YY "49.9 * 19|) *'91

S~~INY(I04) 8 ItwYfI * INT(89,8I * HS(D))

IF (,NOTt K(D)) GO TO 460
YEr * X2 -* YF(1)
IFXCII % IN•T(WXF() - XI.) 0 49,#9 YEFr 0 32,01 4 265

S~IFYM1 a INifTFi 0 124e) 901

469 C01? INUE
CALL ERASE
CALL POINT (0, 490s 6)

.tCALL LINE (561o 409)
&CALL POINT (So 222# 9)

CALL LINE t64,- 222)
CALL. LINE (f•, 198)

SCALL LINE (64# 198)
CALL POINT (447t 222# 6)
CAL.L LINE (511# 222)
CALL LINE (447o 198)

SCALL LINE (51., 19$)
CALL POW t•T 26 200*t i0)

•1 •Figure 21. Continued
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I151 ICGX v INT(XMCG 49;.0 XR 2.) 6

SICGY a INY•(-X2 1 2,9 X3 • 40,q) * 90

CALL pONNT(ICGX.ICGYIY )CALL POINT (IHXl.o HYlplJ)

CALL LINE (IHX2, IHY2)SCALL LINE (IHX4 IMHY4)
CALL L:NE (1HX3* IHY3)
CALL LINE (IHXI# INYe )
CALL LINE (IHX.,&HYS)
CALL LONE (tIX2e IHY6)
CALL LINE (IHX23IHY2)CALL POINT (IHX2olHY6,OI)
CALL LINE (IHM**@!HYS)
CALL LINE (INX4#IHY4)
CALL POINT(IHX4sINY8sl)

CALL LINE (IHX3.INY7)CALL LINE ,,IHX3#IWY3)
CALL POIiT(IHX301HVY7.0)
CALL LINE (IHXI#14YS)
00 473 1 a 1, 4
I •(,NOT* M(I))GO 0TO 470
CALL POINT (IHX(I)o IHY(I), 3)SCALL LINE CIFX{[), IFY(|))

478 CONTINUE
CALL POINT (155. 25s 0)
CALL SYMBOL (IAoR, 4)
CALL POINT (D. 400o 0)
IF" (OF) GO TO 490

CC • TRIGGER ANIMATION CAMERA too

CALL ON
00 480 1 a to 50

483- XX B XONE to 2
CALL OPr

490 CONTINUE
C
C *e. REMAINING PORTION OF SECOND HALF OF M4AIN PROGRAM too

99 (TIME - TP) 513s 503 M03
See- TP a TP * DTPWRIT,% 46,560) TIME*, ?Ito f'2 F3, 'llo T2o T3

WRITE (6#590) X. TM. TS, F2P, A# So XL
U51 IF (TIME - TMAX) 31#, 380p Itf
523 LOOP 2 ,FALSE.

00 530 1 1i 12
XS(I) c X(I;

533 X(I) XnS(I) * OXtl) o OT
TIME s TIME * OT
GO TO 330

54r9! READ C So 589)
SC STOP

C

l .i-,.% FOqM.AT (4(1x, G19,4))

Figure 21. Continued
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I!

~ / HACRO,
/ SUBROUTINE PIC - ROUTINE TO ESTABLISH THE PROPER LEVEL OF
~ j/ INDIRECT ADDRESSING FOR CALLING THE SUBROUTINE SYMSOL AND
/ FOR TRIGGEREING THE ANIHATION CAMERA VIA THE A/P CLOCK F/F 1

CGLOBL IADODR

DAC

9CLOul ONCOFF
ADD,.O0079l162 4

SA!J ¢LOF C644
JADDR ..

TAD (I1

LAC* x
imp* IAOOR

ON ALN

JADC ON

OFt" I
AOCLO~r

•.•Jmpo OlFF

Ill
Figure 22. Subroutine PIC - Macro Language Subroutine

fox Interphasing the C•1 Display System to

the PDP-9 Computer.
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D(3) - position of a leg in body coordinates

I DEN - intermediate computational variable

DXL•(3) - derivative of foot pouition in body coordinates

SPS -sine *I

I XB(3) - position of a leg in body coordinates

XT(3) -- position of a foot in ground tcordinates

The input to the quadruped gait program is by means of papet cape

and consists of the values of 70 parameters which opec!fy7 the body dimen-

sions, ccntrol constants, kinematic parameters of the particular gait,

etc. Each gait has a separate papar tape, and it, addition any parameter

value can be changed if desired, and a uew paper taps p~mched out,

Values of the various quantities c•a be printed on a line printer

if desired, and a visual display of the loce'uti-on system is produced on

a nathode ray tube displ4y system attached to the computer.

I !his quadruped gait program was also put on the faster PDP-1O

computer using a different display package (subroutine DISPL). The

faster computational time of this computer and its better display system

produced displays of the quadruped gaits that approached simulation in

real time.

A.3 Vibrational Analysis of the Quadruped Locomotion System

The computer program described in Section A.2 is the main non-

linear quadruped simulation for producing quadruped gaits. This program

needs co be modified to produce a postural quadruped locomotion system.

For vibrational aaaly-sls, the quadruped is asstaed to stand on all its

fcur feet with its hips vertically above each leg. Therefore, the only( , I
I
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changes that are needed, are in the subroutine MODEL. That is, the

reference model needs to be changed from one describing " marching " type

Sof motion to a " postural " type.

Accordingly, subroutine i;DDEL in the program listing of the main

quadruped gait program (see Section A,2) shocAd be replaced by subroutine

1 POSTUR given below:

C
C *** SUBROUTINE POSTUR *

DO 300 1 = 1, 4

AC(I) - 0.0
DAC(I) = 0.0
XLC(I) - ZR
DLC(I) = 0.0M(I) TRU.T•

300 XF(I) Hl(I)

This converts the program to a quadruped postural system simula-

tion. No other changes are necessary for obtaining the nonlinear system

response to the different vibrational modes.

This quadruped postural system simulation was used to compute the

nonlinear system response by exciting it with each of the twelve elgen-

vectors computed from the linearized quadruped locomotion system modal

matrices using subroutine NSEVBT The nonlinear system response to an

eigenvector describing one of the x axis vibrational modes is given in

Table 6.

SA.4 Linearized System RPsponse of the Quadruped Locomotion System

I Figure 23 is the main computer program used to determine tae

linearized system for the quadruped locomotion system. The expressions

derived in Chapter IV for the lineatized quadruped system (see equations

(4-59) through (4-79)), are used to compute the eigenvalues aud eigen-

1Ii

--•.u
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vectors of each modal matrix. After this, the linear system response is

computed from subroutine LINEAR. Figure 24 is a listing of subroutine

r LINEAR. Table 5 gives the linear system response for one of the x axis

vibrational modes,

A.5 Inverted Pendulum System Computer Programs

This section describes the programs used for the simulation of

the inverted pendulum system. Figure 25 is a listing of the program used

to compute stabilizing control constants for the small motion stability

r •of the inverted pendulum system with the mass pivoted a distance r 4 0

below its center of gravity. This program uses the general algorithm

derived in Section 6.6.2. The program allows the designer to select the

required control constants to satisfy ;:he Routh-Hurwitz criterion.

Figure 26 shows the listing used for the simulation of the inver-

ted pendulum system. This program uses the nonlinear system equationsF
describe( in Section 3.4.

- •For the PDP-9 computer, this program should be used with the

Macro subroutine PIC for CRT display purposes. This program can be used

L with awy digital computer if the necessary modifications are made to take

into account the particular display package used. This inverted pendulum

simulation was also programmed on the faster PDP-IO computer using the

display package DTSPL.

A.6 Quadruped Pace and Biped Walk Programs

For the simulation of the quadruped phce =nd alsc the type of

biped walk considered in this research, the main quadruped gait program

of Section A.2 was modified as follows.

I
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C FORTRAN FROGRAM.
C PAO.GRAK 111-liN TME.-IGENVALULS AtD.1U~f.MVICTGR.S OF THE REAL NO*-

-C SYMMETRIC MATRICES DESCRIBING THE VARIOLS VIBRATIONAL NODES OF THE
3C QUADRUPED PIX-TURAL SYSTEM. THIS PROGRAM ALSO CONFUTES THE "FREE

C NOTION" OF THE LINEARIZED SVSTEM.o
C TH4E XAIN PROGRAM USES BODY DIPIENSWNS AND CONTROL CONSTANTS AS
C INPUTS AND COMPUTES THE MOMEkTS OF INERTIA OF THE BODY ALONG THE
C X. V. Z AXES. TIAE KWOAL MATRICES ARE TUEN COPUTED. M4AIN THEN
C CAL.LS SUBROUTINE NSEVB WHICH COMPUTES T14E EIGENVALUES AND THE
C CORRESPONDING EIGE14VECTORS FOR EACH MODAL MATRIX. FINALLY, THE
C LINEAR SYSTEM RESPONSE IS CCMPUTEO FOR EACH EIGENVECTOR BY
C SUBROUTINE LINEAR.

DIMENSION A120,201, ERIZO). EIIZO), VRt2OZ0)v VI(20920iv

REAL IXX*LYY*IZZ*MA*LO
NMAXu2O
READ(59iO) 9PP

10 FORM4AT(I3)
LCOUNTsO

15 tFCLCCUNT.EQ*MMI GO TO 37C
READ(592O) AA9BBCALO,14

20 FORMATIBFIO.4I)

C COMPUTE THE MCMENTS OF INERTIA FOR A RECTANGULAR PRISM wITH SIDES-iiC 2A, 28, ZC.
IXX-l(9MA*I B8*80.C*CJ1/3.O)
IYY=( (MA*(AA*AA*C*C)1/3.OS
IZZwI £MA~t(AA*AA.85*SSI 1/1.0)

41 WRITE16930) AA, 88, C9 L0, PA, lXX, IVY, IZZ
~ij30 FORMAT (I/LIX.DINERSIONS OF SODY'./I,* Av9*FS*2*2X**B0*,FS*2*2X**CIaotSF5.Z2XOLEHGTHuSFS.Z,2X. 'MASS-*,F5.Z. /IITXv4MOMk-NTS ZSF INERT

REAO(5,401 M
40 FOAMAT(153

KOUNT .0
45 IF(KOLIkT.EQ*K3 GO TO 360

READIS9SO1 CAvOCACBOCSCLDCI.,DCXCy9OCY

60 FRMATI/lX6(NSFC.*Tk1D19 .a*14)?#4CavFO42A ,*CB%*FIO.4,ZX9,DCBsUFIO.4,/, CLa'crFl0.4,2x,'0CLaiF10.4,iX,'DC
2X-'.FI0.4,3X.OCYUO ,FLO.4,/.LEX,'0CYu0*FlD.4,,I)

L NCOUNT. 1
NU4

C COMPUTE THE SYSTEM MATRIX FOR THE X -NODE,

B11. 11wo.0
L 811921-1.0

SI 1. 310.0

Fipunre 243. Main Program for Computing the Model Matri.ces, and
the Linear System Response of the Quadruped
tLocomc-tion System.
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021)ts~ (3iZaZAL-LOL Ai&ODA1li1NA9LC*L0))
8(2,2) - -((4*0#OCA4/1NA*L0OLO)) + ((4*0*DCX)/1ANALO)J

8(2931 m ((3.249C)/LD - 114.0*(LOKICiAM/MA04.OLO))1

042,4) - -f(4.0*(L2.Cl*OCAl/fMA$L0*LO)l
80911=u0.0
8091 3 m0.0

8(4,1) m((32.2$NA4K;J1(IWY$L0) - ((4.0*CA*ILO*Cl))/1YYeLO*LO))
8(492) f 44.0*(LGtCf*OCXl)IYY*LO)) - C(4*0*(LO#Cl$OCAl/fIYY$LO*

814.3) a-t(4.0'(LO.C)*ILO.C)*CA)/( IYY*LO*LO)) + 4432.2*NA*C*(LO.C
1)1I/(Lr,*LQII f- (L4&0#hA9AAfCUJ/iTI)

M9(441 a -1(4.0*(L0.C)*(LO.C)*0CA)/(IIV*LO*LO)) - g(4.0*AA*AA*DCLI

11IYWRITE(69?01
70 FORMAT(3X,'***X-AXIS 1RANSLATI~tLAL & ROTATIOMA. 1400AL MATRIXS**@//)

GO TO 1000
900 dCOMAI-2[ N=4
C COMPUTE THE SYSTEM MATRIX FOR THE Y - NODE*

8(1021-1.0

5(2911 = 132.2/LO) - ((4.0*CS)I(MA*L0$LO)D - .(4.0sCY)/tMAsLOll
8(2921 a -114.ODCA)JI(MA*L0$LO)) - 1(4.0*OCYI/IMA*LOII
8(2,3) *-1132.0C)/LD) * ((4.0*(LO#Cl*CB),IM**LO*LOll
8(2.41 - (14.O*tLO+CI*DC8)/(MA#L*LolJ)

6(3*13)0.0

544.O3(L-*CCY)ILX*(LOIC)OL+)C/(XOOLI t22NCIOC

WRITE169301 A&# 88, Co L0, NAP IXX9 IVY, IZZ

WRITEf~tt00)

Figure 23. Continued
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Na?
c C&WU.1E THE SYSTEM PAAzaLX EGA TH4E TR&&Sk ATIONALL Z AXIS V.ODE.

541,11W0.0

Bt2pl)a-14.O*CL)/MA
6IZ.2)s-14.O$DCL)/MA
WRITE(6v30) AA9 88. C9 L0, l0A. IXX, IVY. IZZ
WA) TEl 6.60) CA.DCA.lCB.DC.8 .CI .C1 CX9 .*CY.C
WRITE 16,130)

130 FORMATi8X9*$*Z-AXIS TRAI4SLATIONAL, MODAL NATR1X**S@.l/)
D0 135 1 -19N4

135 WRITE(6*210) 1B1.vJ),Ja1.t)
GO TO 220

700 tCCUNTa=s
N02

C COMPUTE THE ROTATIOMAL Z - AXIS NODE*

81192)*1.O
8(2,1) a ((32.2*NA*IAA*AA*tIB*SB))/(IZZ*LO)) - (14.0s(AA*AAc*CB0*8
1BB*CA)l/14IZZ*LD#L0))
8(2,2).-4.O*(88*88*0OCkAA**A*DCBI/f IU*LO*LOI
WRITE 16.30) AA* W8 Co 10. MA* IXX. IVY# IZZ
WRITE(6,601 CAOCACS.CCB.9CLOCLtDCXCVDCY
WRIME691701

170 F0RMAT(8BC,2**l-AX".S ROrATIONAL NODAL PATRIX***%I/)
0O 115 I a 1061

1?5 WRITE1692101 (B(IJ3,J*1,Nl
GO TO 220

1000 CONTINUEci I0 190 1 a 1, 14
190 WRITEI6,ZOOI 6(S(IJ)vJ-1,Nl
200 FOiMlATl!.O'.4E13) .---
210 F1GRMAT('0'vI3X9ZFI3*61I220 00 2301 1. *t

DO 230 J =It h
230 A1I.J) - 5119J)

BIG - 0.0

00 240 J -19 N
240 BI a AMAX1,18.ABS(A&14)1" l

CALL NSEVS(ANNAXNeEREIsVRVl ,E8140VBNDI
WRITEI6.ZSO)11 250 FORMATI lIO,16X96COMPIJTED EIGENVALUES' .11)

260 FORMATfIX,lNO.0#3XvlREAL PART',7X,'NAGo PART4#bXt6EAR0R 3OUNDt/)
00 270 1 sit h

270 WRIME6*2600 It ER(Il) EiIIR. MSOMI
280 F0RMAT(1XvI2*3(IX9F15c9lv/J

Figure 23. Continued
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00 310 J al, h
WRITE(6*2901 J

290 FOR1NAT(/,13X,ICOMPUTED EKGENVECTOR NO*00,111/1
WRITE(6930G)

300 FORMATII3XREAL PART'?.IWINAGo PART* 964''ERROR BOUNDea)
DO 310 1 =It h

310 WRITE(69320) VR(I9J)#VIfI9J).V8NO(I@J)
320 FORMAT(IX*3( LX.F1S*9)*/)

RESaO.000
DO 3401In1. N
00 340 Jw I* N
SR--(VR(1.J)*ER(J)-VliIIJ)*UltJ)I

REiRIE(6,35I R

30 FOMPAT(I//.1XLARGEST-ELDUS AL'.*EI5.9e1111 CALL tINEAR(N#ER9EIvVRVI)
GO TO (900.800.700). NCCUNT
KOUNT-KOUNT. I
Go TO 45

360 CONTINUEAr LCOUNTzLCCUNTtI

370 STOP
END

Fiue2. otne
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SUBROUTINE L;NCAR(NtER1EIqVft-3VI1
GtMENSION ER(20!hEI(20).VR(20,201,VI(20,?OJX(200,4),Y(200,.4),

00 30 .i-1,N
DO 30 Km1.,N

- 0 EJvK)=Z.1*VI(JvK)

DO 101 K-lN
WRITE (6,49)1 ' ~FOR AT I X ,'E NV ALUEt
WRITF(6,50) IER(K)IF(KI

so FORRIAT(/,lr,' ALPHA=,f1,ý.?,3X,*OMEGAS',Fl217,/I
WRITE(6,52) K

52 FORMAT1/,I6X,*0.1*C0MPUTED EIGENVFCTCR NC.=',l19//918Xv1R;ZAL PART'

1,TX#*I1MAG. PARTI ,1)

51 FORMAT(1SX9EI5*.,2XvF15*9*/1
WRITF 16,31)

31 FORMAT(/q22X,#LtNEAR YF4RSOFt/

1/jH4,45X*#-',14Xq9-*S//)

00 100 JX1,N
Tit) - 1-1)/10.0
0ENwER4K)*T1 I)
IFtOFN.GT.10V*C] Gn TO T0)1
QK=FXP(DENI
Q2wCfS(FI (K)*T( I11

XITt?=,IA*OI J#KI-B*Eti iIr~

01 CON71NUF

RETUJRN

Figure 24. Subroutine LINEAR -Fortran Suvroutine for
Computing theLinear System Response for each

~7J Eigenvector of a Modal Matrix of the Quadruped
Postural System.
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C FORTRA%
C PROGRAMI TO FIND STABILIZINjG CONTROL CONSTANTS FOR AN
C INVERTED PEkOULVM SYSTEM WITH THE 4ASS PIVOTED BELOW THE
c Titi tdOY* AND HAVING ONE MASSLESS LEG OF CONSTANT LENGTH.
C SUPPORTED RY A " FIXED N FOOT,
C xM4 s MASS OF THEL 800Y
C XL * LEG LEhGTH
C XR s DISTANCE OF T14E BODY CENTER OF GRAVITY ABOVE THE PIVOT
c XI a MOME~NT OF INE14TIA OF THE BODY

c "~ THROUGH F6 a ROUITH COEFFICIEthTS
c X1 a ANGLE 'nV LEG TO THE VERTICAL
c X2 a ANGLE cr (4ODY (LONG SIDE) To THE IlORIZONTA&.

PO' FCJ)P1AT(1X,21k TTY INPUT M1, L. As I.'A ~4/K
LAL TEA.3 4# XM& XL* XR* X0

WAL ACEP'4,0 XM, XL& XR, Xj)
31? F'ORt;AT(bXdIHM.7)N,1HL,7XI4R.7X.IHJ/4 Xs4F7,3/)

XA x XL * (%L * XAw)
Xb a tXI/Xu) * XR * XFR XL *Xk

IFR (TEC . *.) TCAN AO/5
X'j aL/R/i)

WRITE(4,11i)

6?FOROAT(21IH rMOOSE GAMMA( ON TTY)
C.ALL ACCEP'(4# GAMMAXK)

9K4 aGAMMIA 0 XK?
XE x (1K93/YC) - ((32.2*x".XLOXL)/XC) ((32,2*X1.XLeXL*

itKL-XR@GAW'A))/(XB.(XA.GANMR.XB)))
XF x (XROX0C/XL) - 32,2 * XM * XR

12c kRTE(4u13?)
138 FORrAT(IX,3IiK28,F1F,4s4H 1C38,F1094#01 K4v#FIS.4,

14bP xExFID.4,4H xFs*F16*4/)
1* WRITE(41140)
49 FORAT(44k CHOOSE 1(1 LESS TH4AN XE. BUT GREATER THAN XVI)

CALL ACCEPI(4& XXI)
AtR a XI 0 YL X L
RI a XA * XK4 *X8 0 XK2
R2 a XA * (XK3 XM *M XL *32.2) - X11 o XK1
R3 a 32.2 * (11(2 * IL -XK4 * XR)
R4 a 32.2 9 (32.2.E * ER * 0 XL * XKI 0 XL - 1(3.* ER)
RS 7 ((RI * R2 4 O * ff31/RI)

Figure 25. Program for Computing Stabilizing Control Constants
for the Small Motion Stability of the Inverted
Pen~dulum System.
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R~6 a((RS R5 R- RI * R
HO~t(5#5ý, Ro, Rlf RZ#R, R4

FOPf'ATClX'g 4 p4R v#Fl,S,5X,414R6 a*J16,3/)"RI1ru4,17,;, Xe(: XK2s XK3& XK417%FOR'iAT(1Xd.q K1S.F19.4,5H K(2 %,F18,4*5j
4 K3 *PFIh4.4,S,

4 34 *,FIB.4/)
13 FOA9PAI(41% TYPE -1.8,1 TO CWANGE Klo'fK 2eKx3)*ESTART/)IF (X)14,

ST OP

Fiur 253otne
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c ORTRANi
c ROU7IP.j TO S?A~uILIZE A SEL.F-TOROUPCING EMIO PE.4PULU"
c huIH THE MASS P7VOTED BEL.OW TH4E 03DY, AN4D HAVING ONE MASSLESS
C LE~G OF CGNSTANTOLENGTH. WITH A - 71XED " FOOT.4c 7VIGS PROGIPAM US-'S THE EULER-PPEDICTOR CORRECTOR 14THOD OF
C INTEGPAT ION'
c. TH!S PROGRA'7 CAN BE: 'qEV WITN AN! DIGITAL COMPUTER PROVIDED
C Ts14. PROPER ~ATOSARE ,qAOE TO SUBROUTINE PICTUR CQRRES*I c PONN~NG TO "IcE PARTICULkR DIPLAY PACKAGE USED$
c XN v MASS OF THE BODY

c X4a LEN~GTN OF THE LEG
c xR1 a DISTA,ýCE OF 7HE CENTER CF GRAVIY ABOVE THE PIVOT
c X I a MO"ENT Or INCRTIA OF THE SO
C MKI, XK2, XK3 XK4 a CONTROL CON~STANTS
c aANGLE IF LEG TO TH4E VERTICAL
c X2 ANGLE Or THE SQODYLONG SIOE) To THE HORIZONTAL

c X,:f a rIE t3ISPLAY COORDINATES OF Tf4C FOOT
t.. DIiG a W2 OF dfODY DIAGONAL (FT) 9 SGAL.E t^ACT1)P 8l/2FT640.0
c TMfTA 7 ANGLE OF 8007 DIAGONAL TO 800Y LONG SIDE

LOGICAL NOCRT. LOOP, HEAO~tG

T I C(312 XX(42
COM-ON YORK. Al,A 2. A3,A4.A5,A6,ýC1 ,ý2v'3.OX1 .0x2.DE3,0X4
CO?4MO0N/ INPIIT 'OJAG. TwET'. .X1. Xl, .XR.CT ,PT, TEND ,CRT INC.

1XkN1.2.XK3.(K4.X1&,X2'ýX3,X4.TI7V-ElTITLE2o,TITLE3eTITLE4

OATA PEAD?.G,?,FALSE,/,IXi.Iy1/255,53/.XONE/1oi/
~ [IA?rF. fa JAD ITLE~l))

lo 19 FCI'EA[14G) r~n TO 110

t4EACNG s .Ti-UE*
129 FAC~i,2~HTTY INPUT DIAG.. TIE TAB)
CALL ACCEPT i4,DIAGsTHETA)

130 ORPAC28NTTYINPUT Mal FOR NEW TITLE~

CALL ACCEP?e4.K)
IF(KEO.91 GC TO 1519
READ(4,14P) TITLE

140 FOR4AT(4A5)
150 CO0TtNUE

168 FORP-AT(1X7,'HMASSr ftdCRTIAsLE~r, LENGTHsLENG7M XRs CALCIWCv
1 PRINTINCt LINOTIME, cRTImC/)

CALL ACCEPT(4, X", X1, YL 0 XR. CT. PT. TEND. CRTINC)12 WRITEC6017k:) XM* XI* X0. XR. CT. PT. TEND# CRTINC
170 FORPATIlXI4.l,2X.F5,1.4X.F5.l.bX.F5.1,5X.F5,1,4XF7.4#3,F~vit1

1 4XvF6.3/)
180 CRTINC P - CRTINC

NOCRT 8 9FALSE,

GO TO ?09
190 NOCRT 8 *TRUE*
290 WRITE(4f21?,)12 211 FORNAT(M1X.7CONTROL CONiSTANTS/)

Figure 26. Main Program for the Noultm~ar Inverted
B. Pendulum Sya tern Staulatiow,

'4



CALL ACCEpTc4jXK1,X'920Xg(3,Xv4)
is'I7E(6,22:1 XKI, 'XK2# XK3. XK4

220
2380 wHIT(4#24i
240 '0MAY'(1XI2.-HPj!NTlAL STATE VkCO*,*)

CAIA. ACCEPY (A# X1D X2? 4,# X4)
WRlTE(6j,25-- Xlt X2, ;;3e X4
WR I T E(6,,26.'

248 , FOM4Xs4YM #IM1MTT ECTOR#,XoX6NT OROUE/15X,

C**eFIRST NALF OF 7WE I.WN Pf-OGRA?4000
c

71UE v .

PINME -0,00

278 OP 'TPo'E. X2X:K I4XG3

A3 AXM 6 AL 0 XR 0 S!N(X1 -X2)
A4v ,2 *X4 XL SjIN(Xj)

AS 9 32,2 A Xm & XQ SINcX2)

46 2e (X xg 04k R

C2 S (.A% A3 X3 X5 YORK

XM 2 a
()AL (CAI * C2 -A20 XXC)

5F(Ot. I GfJAOC.

0 0,2 8 I"oX f S-L (l 4 439
IFTIE t' 3f* 2?*29

292 70 TOL C*T

C ODOSL BO*IAL FIT* o

IVe a X2 * ETA

JAL t -Gcaix

IOLgur 2. OJAC. Sued

IX N(X ON(l 80 X
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CALL ERASE!X1
CALL POINT(-Y, 4rds )
CALL LZINE(2-12. 40V,

CALL L~iE(IxZ, 1Y4.

CALL LINECIX5# !Y5)
CALL LINL(1X(6, IY8)
CAhLL LINECIX7-) IY?,
CALL LI.%EC1X4, IYA)
CALL P010(1551 25, Vj)
CALL SY;,OL(IkOR* 4)
CALL POINT(¾* 400# 8)
Ir (NOC,;T) t-0 TO 320'

C *~ C4~A,.!'ATIr'M4 CAMFRA0*4

00) 295 1 1

CALL 0%
Do 1 Q i, I

CALL C-FF

30 XG a )XONtC - 2
32Z CO\TINUE
c
C oot SECOND kAIY Ok THE M4AIN PROGRAM***
c
330 jF (TIM4E - PTI"iJ 360# 345. 343
.3417 PTIVE * 011i. + FT

4RITE(6.35,:) TIME, Yi. X2, X3, X4* TORK

36 'F (TIME - YENU)J 2?13. 270. 390
37i LOOP & JPALSE-

0O 3ee I: a s

XSfI) s X(T)
W6 X(I) a XSM* O' XCil * CT

TIME a TIME 0 CT
Go TO 2791

*rv FýJIFAT(1X,45NOO YOU WISH TO CHA&NCE ANY PHYSICAL CO'NSTANTS?

FORATCIX44HOD YUWISH 10 CHANCE ANY CONTROL CONSTANTS?

IF (X6 *EQ, 1,0 GO TO 216

Fi~gura 20'. Continued
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The expression for the lateral control torque TS(1) in subroutine

CONTRL corresponding to equation (6-111) was replaced by the expression

TS(1) - XK3 * X8 + XK4 * B(I) + XK8 * (X8+B(I)) + XK9 * (XIO+DB(1))

corresponding to equation (6-114).

In addition, the subroutine PICTUR was appropriately modified to

display the quadruped pace and the biped walk as shown in Figures 19 and

20 respectively. The values of the control constants K3 , K4 , K., and Kq

were obtained by taking one half of the values of the stabilizing control

V constants K1 through K4 obtained by applying the inverted pendulum Routh-

Hurwitz analysis algorithm to the body in its lateral (y-z) plane.
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